EEG-based emotion recognition using an end-to-end regional-asymmetric convolutional neural network

计算机科学 卷积神经网络 判别式 模式识别(心理学) 提取器 特征(语言学) 人工智能 卷积(计算机科学) 脑电图 特征提取 语音识别 人工神经网络 心理学 语言学 精神科 工程类 哲学 工艺工程
作者
Heng Cui,Aiping Liu,Xu Zhang,Xiang Chen,Kongqiao Wang,Xun Chen
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:205: 106243-106243 被引量:195
标识
DOI:10.1016/j.knosys.2020.106243
摘要

Emotion recognition based on electroencephalography (EEG) is of great important in the field of Human–Computer Interaction (HCI), which has received extensive attention in recent years. Most traditional methods focus on extracting features in time domain and frequency domain. The spatial information from adjacent channels and symmetric channels is often ignored. To better learn spatial representation, in this paper, we propose an end-to-end Regional-Asymmetric Convolutional Neural Network (RACNN) for emotion recognition, which consists of temporal, regional and asymmetric feature extractors. Specifically, continuous 1D convolution layers are employed in temporal feature extractor to learn time–frequency representations. Then, regional feature extractor consists of two 2D convolution layers to capture regional information among physically adjacent channels. Meanwhile, we propose an Asymmetric Differential Layer (ADL) in asymmetric feature extractor by taking the asymmetry property of emotion responses into account, which can capture the discriminative information between left and right hemispheres of the brain. To evaluate our model, we conduct extensive experiments on two publicly available datasets, i.e., DEAP and DREAMER. The proposed model can obtain recognition accuracies over 95% for valence and arousal classification tasks on both datasets, significantly outperforming the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
白小白发布了新的文献求助20
1秒前
2秒前
yemeiyu完成签到,获得积分10
2秒前
小羊完成签到,获得积分10
2秒前
4秒前
77发布了新的文献求助10
5秒前
苹果寻菱完成签到,获得积分20
6秒前
安静发布了新的文献求助10
7秒前
7秒前
bkagyin应助无情夏槐采纳,获得10
8秒前
我是老大应助HH采纳,获得10
9秒前
10秒前
JamesPei应助Emma采纳,获得10
11秒前
yuji238应助努力的科研小白采纳,获得10
11秒前
13秒前
研友_ngX12Z发布了新的文献求助10
13秒前
大模型应助李思采纳,获得10
14秒前
小蘑菇应助King16采纳,获得10
15秒前
ycg完成签到,获得积分10
17秒前
21秒前
bathygobius完成签到,获得积分10
22秒前
hyhyhyhy发布了新的文献求助10
22秒前
22秒前
24秒前
冰狗发布了新的文献求助10
25秒前
等待的啤酒完成签到,获得积分10
26秒前
ming发布了新的文献求助10
26秒前
昭明完成签到,获得积分10
27秒前
Emma发布了新的文献求助10
28秒前
28秒前
谦让冰真完成签到 ,获得积分10
29秒前
赘婿应助zxced13采纳,获得10
30秒前
zjxhjj123发布了新的文献求助20
32秒前
Z1987完成签到,获得积分10
32秒前
kaiyongtang完成签到,获得积分10
32秒前
33秒前
34秒前
深情安青应助ming采纳,获得10
35秒前
35秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310243
求助须知:如何正确求助?哪些是违规求助? 2943212
关于积分的说明 8513174
捐赠科研通 2618448
什么是DOI,文献DOI怎么找? 1431076
科研通“疑难数据库(出版商)”最低求助积分说明 664359
邀请新用户注册赠送积分活动 649542