Fabrication of a Perfusable 3D In Vitro Artery-Mimicking Multichannel System for Artery Disease Models

聚二甲基硅氧烷 剪应力 生物医学工程 材料科学 体内 微流控 体外 细胞外基质 动脉 血管 内皮干细胞 纳米技术 生物物理学 解剖 细胞生物学 化学 生物 复合材料 医学 生物技术 外科 内分泌学 生物化学
作者
Minkyung Cho,Je‐Kyun Park
出处
期刊:ACS Biomaterials Science & Engineering [American Chemical Society]
卷期号:6 (9): 5326-5336 被引量:16
标识
DOI:10.1021/acsbiomaterials.0c00748
摘要

Fabrication of a 3D in vitro model that mimics the artery takes an important role in understanding pathological cell behaviors and mechanisms of vascular diseases by proposing an advanced model that can recapitulate a native vessel condition in a controlled manner. Because a model geometry and the structure of cells are significant for the recapitulation of the hemodynamics of arterial and cell functions, it is necessary to mimic geometries and to induce the proper morphology and orientation of the cells when fabricating a model. In this study, smooth muscle cells (SMCs) and endothelial cells (ECs), which were the main elements in the arterial wall, were cocultured in a multichannel device connected with polydimethylsiloxane (PDMS) fluidic chamber modules to parallelly fabricate a pefusable 3D in vitro human artery-mimicking multichannel system. In the coculture model, a circular PDMS channel with a wrinkled-surface guided directionality and contractile morphology to SMCs, and media perfusion induced directionality to a confluent EC layer as in vivo. Protein markers of cells and synthesized extracellular matrices were demonstrated. Because multichannels were connected to a microfluidic module in a device, it was possible to easily control the microenvironmental conditions and to fabricate coculture models in parallel with a single flow system. Coculture models that can be tuned in designs such as diameter, wall shear stress, and geometry of artery disease were constructed by 3D-printed molds to recapitulate various cellular microenvironments and to model vessels effectively. Finally, the effect of wall shear stress on cells was compared using a device with four different degrees of stenosis channels and investigated in parallel.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Vivian发布了新的文献求助10
3秒前
4秒前
张瑞雪完成签到 ,获得积分10
4秒前
亮仔完成签到,获得积分10
4秒前
xmhxpz完成签到,获得积分10
6秒前
含蓄听南完成签到,获得积分10
6秒前
小包子完成签到,获得积分10
6秒前
万安安发布了新的文献求助10
8秒前
四喜丸子完成签到 ,获得积分10
8秒前
kk完成签到,获得积分10
11秒前
hdc12138完成签到,获得积分10
12秒前
小精灵完成签到 ,获得积分10
13秒前
Jasper应助尊敬的夏槐采纳,获得10
15秒前
16秒前
资白玉完成签到 ,获得积分0
21秒前
邮一颗树莓完成签到 ,获得积分10
21秒前
爱学习的悦悦子完成签到 ,获得积分10
23秒前
圆子完成签到 ,获得积分10
25秒前
鸡蛋饼波比完成签到 ,获得积分10
25秒前
26秒前
xxq___应助杜兰特工队采纳,获得10
26秒前
Sulin完成签到 ,获得积分10
27秒前
NYM完成签到 ,获得积分10
27秒前
Vivian完成签到,获得积分10
29秒前
葡萄小伊ovo完成签到 ,获得积分10
29秒前
30秒前
31秒前
11111完成签到,获得积分10
31秒前
勇敢虫子不怕困难完成签到,获得积分10
32秒前
ha完成签到 ,获得积分10
32秒前
激动的小之完成签到,获得积分10
32秒前
doctorw完成签到,获得积分0
34秒前
36秒前
moonlimb完成签到 ,获得积分10
38秒前
EiketsuChiy完成签到 ,获得积分0
38秒前
NexusExplorer应助ZG采纳,获得10
41秒前
41秒前
42秒前
lion完成签到 ,获得积分10
43秒前
烂漫的煎饼完成签到 ,获得积分10
44秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Conference Record, IAS Annual Meeting 1977 820
England and the Discovery of America, 1481-1620 600
Fault identification method of electrical automation distribution equipment in distribution networks based on neural network 560
Teaching language in context (Third edition) by Derewianka, Beverly; Jones, Pauline 550
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3580504
求助须知:如何正确求助?哪些是违规求助? 3150008
关于积分的说明 9479690
捐赠科研通 2851531
什么是DOI,文献DOI怎么找? 1567864
邀请新用户注册赠送积分活动 734254
科研通“疑难数据库(出版商)”最低求助积分说明 720579