生物
微生物学
抗生素
棒状杆菌
结膜
抗生素耐药性
金黄色葡萄球菌
细菌
抗菌剂
作者
Saichi Hoshi,Daisuke Todokoro,Takashi Sasaki
出处
期刊:Cornea
[Ovid Technologies (Wolters Kluwer)]
日期:2020-11-01
卷期号:39 (11): 1401-1406
被引量:4
标识
DOI:10.1097/ico.0000000000002445
摘要
Purpose Nondiphtherial Corynebacterium species are normal residents of human skin and mucosa, including the conjunctiva and nose, but can cause conjunctivitis and keratitis. Recently, resistance against various classes of antibiotics has been reported in Corynebacterium. The present study investigated the type of species and antibiotic susceptibilities of the conjunctival and nasal Corynebacterium species. Methods This study examined 183 strains of Corynebacterium species that were isolated from patients undergoing preoperative examinations for cataract surgery. Species were identified by RNA polymerase β-subunit-encoding gene (rpoB) sequencing. Antibiotic susceptibility tests were performed by the microdilution method according to the Clinical and Laboratory Standards Institute standard method M45. Results Corynebacterium macginleyi was the most predominant species (84%; 46 of 55) in the conjunctiva. The 2 major species in the nasal cavity were Corynebacterium accolens and Corynebacterium propinquum (44% and 31%, respectively), followed by Corynebacterium pseudodiphtheriticum (8%), Corynebacterium jeikeium (7%), and C. macginleyi (3%). In contrast to other nasal Corynebacterium species, only C. macginleyi showed a high susceptibility to macrolides. However, among nonconjunctival Corynebacterium species, C. propinquum, was unique in having a high resistance rate to levofloxacin (29%), comparable with that observed in C. macginleyi (36%). Penicillin G and tobramycin showed good susceptibility in almost all strains. Conclusions Drug resistance against fluoroquinolones and macrolides was observed in Corynebacterium species, with the antibiotic susceptibility profiles correlating with differences of the species and niche. Nasal and conjunctival Corynebacterium profiles of drug resistance suggest habitat segregation strictly at the species level.
科研通智能强力驱动
Strongly Powered by AbleSci AI