Integration of GWAS Summary Statistics and Gene Expression Reveals Target Cell Types Underlying Kidney Function Traits

全基因组关联研究 生物 表达数量性状基因座 计算生物学 遗传学 基因 数量性状位点 遗传关联 单核苷酸多态性 基因型
作者
Yong Li,Stefan Haug,Pascal Schlosser,Alexander Teumer,Adrienne Tin,Cristian Pattaro,Anna Köttgen,Matthias Wuttke
出处
期刊:Journal of The American Society of Nephrology 卷期号:31 (10): 2326-2340 被引量:30
标识
DOI:10.1681/asn.2020010051
摘要

Significance Statement Genome-wide association studies (GWAS) are a powerful tool to identify genetic variants associated with CKD. However, knowledge of CKD-relevant target tissues and cell types important in the pathogenesis is incomplete. Integrating large-scale kidney function GWAS with gene expression datasets identified kidney and liver as the primary organs for kidney function traits. In the kidney, proximal tubule was the critical cell type for eGFR and urate, as well as for monogenic electrolyte or metabolic disease genes. Podocytes showed enrichment of genes implicated in glomerular disease. Compendia connecting traits, genes, and cell types allow further prioritization of genes in GWAS loci, enabling mechanistic studies. Background Genetic variants identified in genome-wide association studies (GWAS) are often not specific enough to reveal complex underlying physiology. By integrating RNA-seq data and GWAS summary statistics, novel computational methods allow unbiased identification of trait-relevant tissues and cell types. Methods The CKDGen consortium provided GWAS summary data for eGFR, urinary albumin-creatinine ratio (UACR), BUN, and serum urate. Genotype-Tissue Expression Project (GTEx) RNA-seq data were used to construct the top 10% specifically expressed genes for each of 53 tissues followed by linkage disequilibrium (LD) score–based enrichment testing for each trait. Similar procedures were performed for five kidney single-cell RNA-seq datasets from humans and mice and for a microdissected tubule RNA-seq dataset from rat. Gene set enrichment analyses were also conducted for genes implicated in Mendelian kidney diseases. Results Across 53 tissues, genes in kidney function–associated GWAS loci were enriched in kidney ( P =9.1E-8 for eGFR; P =1.2E-5 for urate) and liver ( P =6.8·10 -5 for eGFR). In the kidney, proximal tubule was enriched in humans ( P =8.5E-5 for eGFR; P =7.8E-6 for urate) and mice ( P =0.0003 for eGFR; P =0.0002 for urate) and confirmed as the primary cell type in microdissected tubules and organoids. Gene set enrichment analysis supported this and showed enrichment of genes implicated in monogenic glomerular diseases in podocytes. A systematic approach generated a comprehensive list of GWAS genes prioritized by cell type–specific expression. Conclusions Integration of GWAS statistics of kidney function traits and gene expression data identified relevant tissues and cell types, as a basis for further mechanistic studies to understand GWAS loci.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
你我山巅自相逢完成签到 ,获得积分10
1秒前
浮游应助糟糕的黎云采纳,获得10
1秒前
刘致远发布了新的文献求助10
2秒前
longer完成签到 ,获得积分10
2秒前
xue完成签到 ,获得积分10
2秒前
3秒前
刘壮完成签到 ,获得积分10
3秒前
4秒前
小骄傲发布了新的文献求助10
4秒前
4秒前
5秒前
核桃应助于梦寒采纳,获得30
5秒前
orixero应助zhj采纳,获得10
6秒前
6秒前
叮叮完成签到 ,获得积分10
8秒前
高大翠安发布了新的文献求助10
8秒前
adai发布了新的文献求助10
8秒前
糟糕的黎云完成签到,获得积分10
9秒前
独特思真完成签到 ,获得积分10
9秒前
9秒前
ErPang关注了科研通微信公众号
9秒前
12完成签到 ,获得积分10
10秒前
李健的小迷弟应助献忠采纳,获得10
11秒前
hugoh发布了新的文献求助10
11秒前
小路完成签到,获得积分10
12秒前
章慕思完成签到,获得积分10
12秒前
12秒前
13秒前
14秒前
hao253完成签到,获得积分10
15秒前
17秒前
冷傲的擎汉完成签到 ,获得积分10
18秒前
任性颜演发布了新的文献求助30
18秒前
Waney完成签到,获得积分10
18秒前
清爽夜雪发布了新的文献求助10
18秒前
18秒前
rita_sun1969完成签到,获得积分10
19秒前
以鹿之路发布了新的文献求助10
21秒前
隐形的夏真完成签到,获得积分10
21秒前
99完成签到 ,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5649914
求助须知:如何正确求助?哪些是违规求助? 4779409
关于积分的说明 15050588
捐赠科研通 4808829
什么是DOI,文献DOI怎么找? 2571871
邀请新用户注册赠送积分活动 1528143
关于科研通互助平台的介绍 1486917