清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

One-Dimensional Deep Attention Convolution Network (ODACN) for Signals Classification

计算机科学 判别式 人工智能 模式识别(心理学) 卷积神经网络 特征(语言学) 卷积(计算机科学) 特征提取 背景(考古学) 光学(聚焦) 频道(广播) 人工神经网络 电信 古生物学 哲学 语言学 物理 光学 生物
作者
Shuyuan Yang,Chen Yang,Dongzhu Feng,Xiaoyang Hao,Min Wang
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:8: 2804-2812 被引量:17
标识
DOI:10.1109/access.2019.2958131
摘要

Handcraft features are commonly used for signal classification, which is a time-consuming feature engineering. In order to develop a general and robust feature learning method for radio signals, a novel One-dimensional Deep Attention Convolution Network (ODACN) is proposed to automatically extract discriminative features and classify various kinds of signals. First, one-dimensional (1-D) sparse filters are designed to learn hierarchical features of raw signals. Second, an attention layer is constructed to weight and assemble feature maps, to derive more context-relevant representation. By using simple 1-D filtering, ODACN is characteristic of less parameters and lower computation complexity than traditional Convolutional Neural Networks (CNNs). Moreover, feature attention can mimic a succession of partial glimpses of humans and focus on context parts of signals, thus helps in recognizing signals even at low Signal-to-Noise Ratio (SNR). Some experiments are taken to classify 31 kinds of signals with different modulation and channel coding types, and the results show that ODACN can achieve accurate classification of very similar signals, without any prior knowledge and manual operation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
萧萧完成签到,获得积分10
9秒前
15秒前
crystaler完成签到 ,获得积分10
20秒前
Arvin完成签到,获得积分10
21秒前
30秒前
samuel发布了新的文献求助10
35秒前
1中蓝完成签到 ,获得积分10
48秒前
49秒前
大医仁心完成签到 ,获得积分10
52秒前
儒雅黑裤完成签到 ,获得积分10
53秒前
df完成签到 ,获得积分10
53秒前
samuel完成签到,获得积分10
55秒前
q792309106发布了新的文献求助10
56秒前
1分钟前
摸鱼主编magazine完成签到,获得积分10
1分钟前
jlwang发布了新的文献求助10
1分钟前
耳机单蹦完成签到,获得积分10
1分钟前
淡出发布了新的文献求助10
1分钟前
1分钟前
常有李发布了新的文献求助10
1分钟前
9527完成签到,获得积分10
1分钟前
华仔应助q792309106采纳,获得10
1分钟前
lorentzh完成签到,获得积分10
1分钟前
夏天完成签到 ,获得积分10
1分钟前
淡出完成签到,获得积分20
1分钟前
打打应助科研通管家采纳,获得10
1分钟前
jlwang完成签到,获得积分10
1分钟前
zlw121完成签到 ,获得积分10
2分钟前
高兴的平露完成签到 ,获得积分10
2分钟前
MM完成签到 ,获得积分10
2分钟前
Akim应助抱薪救火采纳,获得10
2分钟前
徐团伟完成签到 ,获得积分10
2分钟前
Mira完成签到,获得积分10
2分钟前
2分钟前
辞安发布了新的文献求助10
3分钟前
tranphucthinh发布了新的文献求助10
3分钟前
tranphucthinh完成签到,获得积分10
3分钟前
拼搏的帽子完成签到 ,获得积分10
3分钟前
荀万声完成签到,获得积分10
3分钟前
外向的芒果完成签到 ,获得积分10
3分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5211911
求助须知:如何正确求助?哪些是违规求助? 4388251
关于积分的说明 13663692
捐赠科研通 4248578
什么是DOI,文献DOI怎么找? 2331051
邀请新用户注册赠送积分活动 1328776
关于科研通互助平台的介绍 1281955