材料科学
薄脆饼
导电体
微型多孔材料
透射电子显微镜
电介质
化学工程
光电子学
Crystal(编程语言)
导电原子力显微镜
纳米技术
分析化学(期刊)
复合材料
原子力显微镜
有机化学
化学
计算机科学
工程类
程序设计语言
作者
Youxing Liu,Yanan Wei,Minghui Liu,Yichao Bai,Xinyu Wang,Shengcong Shang,Changsheng Du,Wenqiang Gao,Jianyi Chen,Yunqi Liu
标识
DOI:10.1002/adma.202007741
摘要
Abstract The preparation of large‐area 2D conductive metal–organic framework (MOF) films remains highly desirable but challenging. Here, inspired by the capillary phenomenon, a face‐to‐face confinement growth method to grow conductive 2D Cu 2 (TCPP) (TCPP = meso‐tetra(4‐carboxyphenyl)porphine) MOF films on dielectric substrates is developed. Trace amounts of solutions containing low‐concentration Cu 2+ and TCPP are pumped cyclically into a micropore interface to produce this growth. The crystal structures are confirmed with various characterization techniques, which include high‐resolution atomic force microscopy and cryogenic transmission electron microscopy (Cryo‐TEM). The Cu 2 (TCPP) MOF film exhibit an electrical conductivity of ≈0.007 S cm −1 , which is approximately four orders of magnitude higher than other carboxylic‐acid‐based MOF materials (10 −6 S cm −1 ). Other wafer‐scale conductive MOF films such as M 3 (HHTP) 2 (M = Cu, Co, and Ni; HHTP = 2,3,6,7,10,11‐triphenylenehexol) can be produced utilizing this strategy and suggests this method has widescale applicability potential.
科研通智能强力驱动
Strongly Powered by AbleSci AI