Hybrid Harris hawks optimization with cuckoo search for drug design and discovery in chemoinformatics.

药物发现 化学空间 搜索算法
作者
Essam H. Houssein,Mosa E. Hosney,Mohamed Elhoseny,Diego Oliva,Waleed M. Mohamed,Mahmoud Hassaballah
出处
期刊:Scientific Reports [Springer Nature]
卷期号:10 (1): 14439- 被引量:22
标识
DOI:10.1038/s41598-020-71502-z
摘要

One of the major drawbacks of cheminformatics is a large amount of information present in the datasets. In the majority of cases, this information contains redundant instances that affect the analysis of similarity measurements with respect to drug design and discovery. Therefore, using classical methods such as the protein bank database and quantum mechanical calculations are insufficient owing to the dimensionality of search spaces. In this paper, we introduce a hybrid metaheuristic algorithm called CHHO-CS, which combines Harris hawks optimizer (HHO) with two operators: cuckoo search (CS) and chaotic maps. The role of CS is to control the main position vectors of the HHO algorithm to maintain the balance between exploitation and exploration phases, while the chaotic maps are used to update the control energy parameters to avoid falling into local optimum and premature convergence. Feature selection (FS) is a tool that permits to reduce the dimensionality of the dataset by removing redundant and non desired information, then FS is very helpful in cheminformatics. FS methods employ a classifier that permits to identify the best subset of features. The support vector machines (SVMs) are then used by the proposed CHHO-CS as an objective function for the classification process in FS. The CHHO-CS-SVM is tested in the selection of appropriate chemical descriptors and compound activities. Various datasets are used to validate the efficiency of the proposed CHHO-CS-SVM approach including ten from the UCI machine learning repository. Additionally, two chemical datasets (i.e., quantitative structure-activity relation biodegradation and monoamine oxidase) were utilized for selecting the most significant chemical descriptors and chemical compounds activities. The extensive experimental and statistical analyses exhibit that the suggested CHHO-CS method accomplished much-preferred trade-off solutions over the competitor algorithms including the HHO, CS, particle swarm optimization, moth-flame optimization, grey wolf optimizer, Salp swarm algorithm, and sine-cosine algorithm surfaced in the literature. The experimental results proved that the complexity associated with cheminformatics can be handled using chaotic maps and hybridizing the meta-heuristic methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NCNST-shi完成签到,获得积分10
刚刚
七七完成签到,获得积分10
刚刚
kk发布了新的文献求助20
1秒前
lalala发布了新的文献求助10
1秒前
aurora应助懂梦采纳,获得10
2秒前
断章发布了新的文献求助10
2秒前
myf完成签到,获得积分10
3秒前
NCNST-shi发布了新的文献求助10
3秒前
文鸯3完成签到,获得积分10
5秒前
晓然发布了新的文献求助10
6秒前
qpzn完成签到,获得积分10
6秒前
7秒前
7秒前
8秒前
科研通AI2S应助文艺的问寒采纳,获得10
8秒前
李爱国应助忧心的花瓣采纳,获得10
11秒前
轻松的百川完成签到,获得积分10
11秒前
CooLIT发布了新的文献求助10
12秒前
12秒前
Light发布了新的文献求助10
12秒前
Y哦莫哦莫发布了新的文献求助10
13秒前
chongziccc完成签到 ,获得积分10
14秒前
14秒前
16秒前
李健应助li采纳,获得10
16秒前
春和景明发布了新的文献求助10
17秒前
17秒前
236发布了新的文献求助10
17秒前
平淡爆米花完成签到,获得积分10
17秒前
董如意发布了新的文献求助10
18秒前
顾矜应助Light采纳,获得10
19秒前
nn完成签到,获得积分10
19秒前
huihui完成签到,获得积分10
19秒前
南瓜豆腐完成签到 ,获得积分10
19秒前
20秒前
爆米花应助晨曦采纳,获得10
20秒前
20秒前
21秒前
风清扬发布了新的文献求助200
21秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
On the Angular Distribution in Nuclear Reactions and Coincidence Measurements 1000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5308864
求助须知:如何正确求助?哪些是违规求助? 4453810
关于积分的说明 13858222
捐赠科研通 4341572
什么是DOI,文献DOI怎么找? 2384004
邀请新用户注册赠送积分活动 1378588
关于科研通互助平台的介绍 1346583