亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Hybrid Harris hawks optimization with cuckoo search for drug design and discovery in chemoinformatics.

药物发现 化学空间 搜索算法
作者
Essam H. Houssein,Mosa E. Hosney,Mohamed Elhoseny,Diego Oliva,Waleed M. Mohamed,Mahmoud Hassaballah
出处
期刊:Scientific Reports [Springer Nature]
卷期号:10 (1): 14439- 被引量:22
标识
DOI:10.1038/s41598-020-71502-z
摘要

One of the major drawbacks of cheminformatics is a large amount of information present in the datasets. In the majority of cases, this information contains redundant instances that affect the analysis of similarity measurements with respect to drug design and discovery. Therefore, using classical methods such as the protein bank database and quantum mechanical calculations are insufficient owing to the dimensionality of search spaces. In this paper, we introduce a hybrid metaheuristic algorithm called CHHO-CS, which combines Harris hawks optimizer (HHO) with two operators: cuckoo search (CS) and chaotic maps. The role of CS is to control the main position vectors of the HHO algorithm to maintain the balance between exploitation and exploration phases, while the chaotic maps are used to update the control energy parameters to avoid falling into local optimum and premature convergence. Feature selection (FS) is a tool that permits to reduce the dimensionality of the dataset by removing redundant and non desired information, then FS is very helpful in cheminformatics. FS methods employ a classifier that permits to identify the best subset of features. The support vector machines (SVMs) are then used by the proposed CHHO-CS as an objective function for the classification process in FS. The CHHO-CS-SVM is tested in the selection of appropriate chemical descriptors and compound activities. Various datasets are used to validate the efficiency of the proposed CHHO-CS-SVM approach including ten from the UCI machine learning repository. Additionally, two chemical datasets (i.e., quantitative structure-activity relation biodegradation and monoamine oxidase) were utilized for selecting the most significant chemical descriptors and chemical compounds activities. The extensive experimental and statistical analyses exhibit that the suggested CHHO-CS method accomplished much-preferred trade-off solutions over the competitor algorithms including the HHO, CS, particle swarm optimization, moth-flame optimization, grey wolf optimizer, Salp swarm algorithm, and sine-cosine algorithm surfaced in the literature. The experimental results proved that the complexity associated with cheminformatics can be handled using chaotic maps and hybridizing the meta-heuristic methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助洞两采纳,获得10
2秒前
6秒前
淡然的蓝天完成签到 ,获得积分10
7秒前
huayu完成签到,获得积分10
9秒前
10秒前
猕猴桃完成签到,获得积分10
11秒前
余亚东发布了新的文献求助10
12秒前
wql完成签到,获得积分10
14秒前
江辰汐月发布了新的文献求助10
14秒前
情怀应助yik采纳,获得10
15秒前
从容冷安完成签到 ,获得积分10
18秒前
乐乐应助辛勤的映波采纳,获得10
21秒前
Hissio完成签到,获得积分10
25秒前
28秒前
栋栋完成签到 ,获得积分10
31秒前
1234完成签到,获得积分20
32秒前
我是老大应助甜蜜乐松采纳,获得10
32秒前
ceeray23发布了新的文献求助20
33秒前
35秒前
42秒前
William_l_c完成签到,获得积分10
48秒前
江辰汐月完成签到,获得积分10
56秒前
小二郎应助liuliu采纳,获得10
56秒前
一枚小豆完成签到,获得积分10
58秒前
研友_VZG7GZ应助科研通管家采纳,获得10
59秒前
1分钟前
1分钟前
pK完成签到 ,获得积分10
1分钟前
朴实的小萱完成签到 ,获得积分10
1分钟前
liuliu发布了新的文献求助10
1分钟前
磨刀霍霍阿里嘎多完成签到 ,获得积分10
1分钟前
zxy完成签到,获得积分20
1分钟前
1分钟前
lcw1998完成签到 ,获得积分10
1分钟前
wenwj9发布了新的文献求助30
1分钟前
李爱国应助余亚东采纳,获得10
1分钟前
陈谦嵩完成签到 ,获得积分10
1分钟前
zxy发布了新的文献求助10
1分钟前
服了您完成签到 ,获得积分10
1分钟前
li完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
理系総合のための生命科学 第5版〜分子・細胞・個体から知る“生命"のしくみ 800
普遍生物学: 物理に宿る生命、生命の紡ぐ物理 800
花の香りの秘密―遺伝子情報から機能性まで 800
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5606518
求助须知:如何正确求助?哪些是违规求助? 4690909
关于积分的说明 14866536
捐赠科研通 4706185
什么是DOI,文献DOI怎么找? 2542718
邀请新用户注册赠送积分活动 1508129
关于科研通互助平台的介绍 1472276