Hybrid Harris hawks optimization with cuckoo search for drug design and discovery in chemoinformatics.

药物发现 化学空间 搜索算法
作者
Essam H. Houssein,Mosa E. Hosney,Mohamed Elhoseny,Diego Oliva,Waleed M. Mohamed,Mahmoud Hassaballah
出处
期刊:Scientific Reports [Springer Nature]
卷期号:10 (1): 14439- 被引量:22
标识
DOI:10.1038/s41598-020-71502-z
摘要

One of the major drawbacks of cheminformatics is a large amount of information present in the datasets. In the majority of cases, this information contains redundant instances that affect the analysis of similarity measurements with respect to drug design and discovery. Therefore, using classical methods such as the protein bank database and quantum mechanical calculations are insufficient owing to the dimensionality of search spaces. In this paper, we introduce a hybrid metaheuristic algorithm called CHHO-CS, which combines Harris hawks optimizer (HHO) with two operators: cuckoo search (CS) and chaotic maps. The role of CS is to control the main position vectors of the HHO algorithm to maintain the balance between exploitation and exploration phases, while the chaotic maps are used to update the control energy parameters to avoid falling into local optimum and premature convergence. Feature selection (FS) is a tool that permits to reduce the dimensionality of the dataset by removing redundant and non desired information, then FS is very helpful in cheminformatics. FS methods employ a classifier that permits to identify the best subset of features. The support vector machines (SVMs) are then used by the proposed CHHO-CS as an objective function for the classification process in FS. The CHHO-CS-SVM is tested in the selection of appropriate chemical descriptors and compound activities. Various datasets are used to validate the efficiency of the proposed CHHO-CS-SVM approach including ten from the UCI machine learning repository. Additionally, two chemical datasets (i.e., quantitative structure-activity relation biodegradation and monoamine oxidase) were utilized for selecting the most significant chemical descriptors and chemical compounds activities. The extensive experimental and statistical analyses exhibit that the suggested CHHO-CS method accomplished much-preferred trade-off solutions over the competitor algorithms including the HHO, CS, particle swarm optimization, moth-flame optimization, grey wolf optimizer, Salp swarm algorithm, and sine-cosine algorithm surfaced in the literature. The experimental results proved that the complexity associated with cheminformatics can be handled using chaotic maps and hybridizing the meta-heuristic methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助科研通管家采纳,获得10
刚刚
浮游应助科研通管家采纳,获得10
刚刚
丘比特应助科研通管家采纳,获得10
刚刚
所所应助科研通管家采纳,获得10
刚刚
无花果应助科研通管家采纳,获得30
刚刚
情怀应助科研通管家采纳,获得10
刚刚
无极微光应助科研通管家采纳,获得20
刚刚
AN应助科研通管家采纳,获得50
刚刚
111发布了新的文献求助10
1秒前
Akim应助科研通管家采纳,获得20
1秒前
小蘑菇应助科研通管家采纳,获得10
1秒前
深情安青应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
1秒前
2秒前
momo发布了新的文献求助10
3秒前
5秒前
7秒前
Pattis完成签到 ,获得积分10
8秒前
红红发布了新的文献求助10
8秒前
Solkatt发布了新的文献求助10
10秒前
gavin完成签到 ,获得积分10
10秒前
小马甲应助tracy采纳,获得10
11秒前
12秒前
niNe3YUE应助朴实雪兰采纳,获得10
13秒前
大意的茈完成签到 ,获得积分10
13秒前
杰尼龟完成签到,获得积分10
14秒前
打打应助红红采纳,获得30
16秒前
南沐沐完成签到 ,获得积分20
16秒前
良医完成签到 ,获得积分10
17秒前
大个应助ziwnbn采纳,获得10
17秒前
刘慧发布了新的文献求助10
18秒前
zzz完成签到 ,获得积分10
19秒前
Lucas应助Solkatt采纳,获得10
19秒前
20秒前
20秒前
江浔卿发布了新的文献求助10
21秒前
南沐沐关注了科研通微信公众号
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557467
求助须知:如何正确求助?哪些是违规求助? 4642491
关于积分的说明 14668341
捐赠科研通 4583911
什么是DOI,文献DOI怎么找? 2514433
邀请新用户注册赠送积分活动 1488818
关于科研通互助平台的介绍 1459439