Hybrid Harris hawks optimization with cuckoo search for drug design and discovery in chemoinformatics.

药物发现 化学空间 搜索算法
作者
Essam H. Houssein,Mosa E. Hosney,Mohamed Elhoseny,Diego Oliva,Waleed M. Mohamed,Mahmoud Hassaballah
出处
期刊:Scientific Reports [Springer Nature]
卷期号:10 (1): 14439- 被引量:22
标识
DOI:10.1038/s41598-020-71502-z
摘要

One of the major drawbacks of cheminformatics is a large amount of information present in the datasets. In the majority of cases, this information contains redundant instances that affect the analysis of similarity measurements with respect to drug design and discovery. Therefore, using classical methods such as the protein bank database and quantum mechanical calculations are insufficient owing to the dimensionality of search spaces. In this paper, we introduce a hybrid metaheuristic algorithm called CHHO-CS, which combines Harris hawks optimizer (HHO) with two operators: cuckoo search (CS) and chaotic maps. The role of CS is to control the main position vectors of the HHO algorithm to maintain the balance between exploitation and exploration phases, while the chaotic maps are used to update the control energy parameters to avoid falling into local optimum and premature convergence. Feature selection (FS) is a tool that permits to reduce the dimensionality of the dataset by removing redundant and non desired information, then FS is very helpful in cheminformatics. FS methods employ a classifier that permits to identify the best subset of features. The support vector machines (SVMs) are then used by the proposed CHHO-CS as an objective function for the classification process in FS. The CHHO-CS-SVM is tested in the selection of appropriate chemical descriptors and compound activities. Various datasets are used to validate the efficiency of the proposed CHHO-CS-SVM approach including ten from the UCI machine learning repository. Additionally, two chemical datasets (i.e., quantitative structure-activity relation biodegradation and monoamine oxidase) were utilized for selecting the most significant chemical descriptors and chemical compounds activities. The extensive experimental and statistical analyses exhibit that the suggested CHHO-CS method accomplished much-preferred trade-off solutions over the competitor algorithms including the HHO, CS, particle swarm optimization, moth-flame optimization, grey wolf optimizer, Salp swarm algorithm, and sine-cosine algorithm surfaced in the literature. The experimental results proved that the complexity associated with cheminformatics can be handled using chaotic maps and hybridizing the meta-heuristic methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jerry完成签到,获得积分10
刚刚
研究牲发布了新的文献求助10
1秒前
3秒前
yyy完成签到 ,获得积分10
4秒前
4秒前
shw完成签到 ,获得积分10
5秒前
夏虫完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
8秒前
huokuoluo完成签到,获得积分10
8秒前
忧伤的绍辉完成签到 ,获得积分10
10秒前
新手请多指教完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
15秒前
领导范儿应助悦耳寒松采纳,获得10
15秒前
青大最亮的仔完成签到,获得积分10
16秒前
饱满的荧完成签到 ,获得积分10
17秒前
18秒前
量子星尘发布了新的文献求助10
18秒前
shouyu29应助科研通管家采纳,获得10
19秒前
彭于晏应助科研通管家采纳,获得10
19秒前
充电宝应助科研通管家采纳,获得10
20秒前
无花果应助科研通管家采纳,获得10
20秒前
seveno应助科研通管家采纳,获得10
20秒前
无极微光应助科研通管家采纳,获得20
20秒前
小白完成签到,获得积分10
20秒前
20秒前
bkagyin应助科研通管家采纳,获得10
20秒前
20秒前
NexusExplorer应助科研通管家采纳,获得10
20秒前
mlty00完成签到,获得积分10
22秒前
雨竹完成签到 ,获得积分10
22秒前
活泼的寒安完成签到 ,获得积分10
23秒前
风不尽,树不静完成签到 ,获得积分10
25秒前
小武完成签到,获得积分10
25秒前
甜蜜的阳光完成签到 ,获得积分10
26秒前
张庭豪完成签到,获得积分10
26秒前
27秒前
gougou发布了新的文献求助10
27秒前
登望完成签到,获得积分10
31秒前
健忘丹珍完成签到,获得积分10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5715656
求助须知:如何正确求助?哪些是违规求助? 5236162
关于积分的说明 15274773
捐赠科研通 4866356
什么是DOI,文献DOI怎么找? 2612943
邀请新用户注册赠送积分活动 1563102
关于科研通互助平台的介绍 1520599