Hybrid Harris hawks optimization with cuckoo search for drug design and discovery in chemoinformatics.

药物发现 化学空间 搜索算法
作者
Essam H. Houssein,Mosa E. Hosney,Mohamed Elhoseny,Diego Oliva,Waleed M. Mohamed,Mahmoud Hassaballah
出处
期刊:Scientific Reports [Springer Nature]
卷期号:10 (1): 14439- 被引量:22
标识
DOI:10.1038/s41598-020-71502-z
摘要

One of the major drawbacks of cheminformatics is a large amount of information present in the datasets. In the majority of cases, this information contains redundant instances that affect the analysis of similarity measurements with respect to drug design and discovery. Therefore, using classical methods such as the protein bank database and quantum mechanical calculations are insufficient owing to the dimensionality of search spaces. In this paper, we introduce a hybrid metaheuristic algorithm called CHHO-CS, which combines Harris hawks optimizer (HHO) with two operators: cuckoo search (CS) and chaotic maps. The role of CS is to control the main position vectors of the HHO algorithm to maintain the balance between exploitation and exploration phases, while the chaotic maps are used to update the control energy parameters to avoid falling into local optimum and premature convergence. Feature selection (FS) is a tool that permits to reduce the dimensionality of the dataset by removing redundant and non desired information, then FS is very helpful in cheminformatics. FS methods employ a classifier that permits to identify the best subset of features. The support vector machines (SVMs) are then used by the proposed CHHO-CS as an objective function for the classification process in FS. The CHHO-CS-SVM is tested in the selection of appropriate chemical descriptors and compound activities. Various datasets are used to validate the efficiency of the proposed CHHO-CS-SVM approach including ten from the UCI machine learning repository. Additionally, two chemical datasets (i.e., quantitative structure-activity relation biodegradation and monoamine oxidase) were utilized for selecting the most significant chemical descriptors and chemical compounds activities. The extensive experimental and statistical analyses exhibit that the suggested CHHO-CS method accomplished much-preferred trade-off solutions over the competitor algorithms including the HHO, CS, particle swarm optimization, moth-flame optimization, grey wolf optimizer, Salp swarm algorithm, and sine-cosine algorithm surfaced in the literature. The experimental results proved that the complexity associated with cheminformatics can be handled using chaotic maps and hybridizing the meta-heuristic methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhangxiaoqing完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
9秒前
20秒前
是榤啊完成签到 ,获得积分10
20秒前
kingfly2010完成签到,获得积分10
23秒前
甜乎贝贝完成签到 ,获得积分10
24秒前
欣欣完成签到 ,获得积分10
25秒前
蚂蚁飞飞完成签到,获得积分10
25秒前
25秒前
马冬梅完成签到 ,获得积分10
30秒前
hj123完成签到,获得积分10
31秒前
量子星尘发布了新的文献求助10
36秒前
Migue应助科研通管家采纳,获得10
43秒前
合适靖儿完成签到 ,获得积分10
46秒前
49秒前
吕圆圆圆啊完成签到,获得积分10
53秒前
踏实的无敌完成签到,获得积分10
59秒前
风起枫落完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
Meteor636完成签到 ,获得积分10
1分钟前
fjhsg25发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
zenabia完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
沉静觅风完成签到,获得积分10
1分钟前
我来也完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
玖月完成签到 ,获得积分10
1分钟前
ng完成签到 ,获得积分10
1分钟前
1分钟前
ZHANG完成签到 ,获得积分10
1分钟前
roundtree完成签到 ,获得积分10
1分钟前
可靠映秋完成签到,获得积分10
1分钟前
我独舞完成签到 ,获得积分10
1分钟前
沉静香氛完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482634
求助须知:如何正确求助?哪些是违规求助? 4583368
关于积分的说明 14389218
捐赠科研通 4512540
什么是DOI,文献DOI怎么找? 2473057
邀请新用户注册赠送积分活动 1459201
关于科研通互助平台的介绍 1432781