Hybrid Harris hawks optimization with cuckoo search for drug design and discovery in chemoinformatics.

药物发现 化学空间 搜索算法
作者
Essam H. Houssein,Mosa E. Hosney,Mohamed Elhoseny,Diego Oliva,Waleed M. Mohamed,Mahmoud Hassaballah
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:10 (1): 14439- 被引量:22
标识
DOI:10.1038/s41598-020-71502-z
摘要

One of the major drawbacks of cheminformatics is a large amount of information present in the datasets. In the majority of cases, this information contains redundant instances that affect the analysis of similarity measurements with respect to drug design and discovery. Therefore, using classical methods such as the protein bank database and quantum mechanical calculations are insufficient owing to the dimensionality of search spaces. In this paper, we introduce a hybrid metaheuristic algorithm called CHHO-CS, which combines Harris hawks optimizer (HHO) with two operators: cuckoo search (CS) and chaotic maps. The role of CS is to control the main position vectors of the HHO algorithm to maintain the balance between exploitation and exploration phases, while the chaotic maps are used to update the control energy parameters to avoid falling into local optimum and premature convergence. Feature selection (FS) is a tool that permits to reduce the dimensionality of the dataset by removing redundant and non desired information, then FS is very helpful in cheminformatics. FS methods employ a classifier that permits to identify the best subset of features. The support vector machines (SVMs) are then used by the proposed CHHO-CS as an objective function for the classification process in FS. The CHHO-CS-SVM is tested in the selection of appropriate chemical descriptors and compound activities. Various datasets are used to validate the efficiency of the proposed CHHO-CS-SVM approach including ten from the UCI machine learning repository. Additionally, two chemical datasets (i.e., quantitative structure-activity relation biodegradation and monoamine oxidase) were utilized for selecting the most significant chemical descriptors and chemical compounds activities. The extensive experimental and statistical analyses exhibit that the suggested CHHO-CS method accomplished much-preferred trade-off solutions over the competitor algorithms including the HHO, CS, particle swarm optimization, moth-flame optimization, grey wolf optimizer, Salp swarm algorithm, and sine-cosine algorithm surfaced in the literature. The experimental results proved that the complexity associated with cheminformatics can be handled using chaotic maps and hybridizing the meta-heuristic methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
明亮元柏发布了新的文献求助30
刚刚
小小菜鸟完成签到,获得积分10
5秒前
5秒前
杰小瑞完成签到,获得积分10
5秒前
所所应助饶天源采纳,获得10
6秒前
Owen应助looking采纳,获得10
7秒前
细心慕凝完成签到,获得积分10
7秒前
卷卷发布了新的文献求助10
7秒前
8秒前
1234hai完成签到 ,获得积分10
9秒前
drcannal发布了新的文献求助10
10秒前
不想干活应助安澜采纳,获得10
10秒前
yunuo完成签到,获得积分10
10秒前
笨笨惜天发布了新的文献求助10
12秒前
12秒前
ding应助鲨鱼采纳,获得10
13秒前
14秒前
可爱的函函应助玉梅采纳,获得10
15秒前
cherry发布了新的文献求助10
15秒前
15秒前
16秒前
16秒前
17秒前
小蘑菇应助笨笨惜天采纳,获得10
19秒前
JamesPei应助耀学菜菜采纳,获得10
19秒前
饶天源发布了新的文献求助10
19秒前
looking发布了新的文献求助10
19秒前
20秒前
今后应助学术蛔虫采纳,获得10
21秒前
传奇3应助Lazyneko采纳,获得10
21秒前
23秒前
drcannal完成签到,获得积分10
24秒前
25秒前
鲨鱼完成签到,获得积分20
28秒前
畅快珩完成签到,获得积分10
28秒前
29秒前
微风完成签到 ,获得积分10
29秒前
31秒前
looking完成签到,获得积分10
33秒前
Jacky77发布了新的文献求助10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4624923
求助须知:如何正确求助?哪些是违规求助? 4024171
关于积分的说明 12456546
捐赠科研通 3708857
什么是DOI,文献DOI怎么找? 2045726
邀请新用户注册赠送积分活动 1077723
科研通“疑难数据库(出版商)”最低求助积分说明 960238