Soft sensor with shape descriptors for flame quality prediction based on LSTM regression

人工神经网络 燃烧 可靠性(半导体) 烟气 计算机科学 人工智能 时间序列 机器学习 循环神经网络 工程类 废物管理 量子力学 物理 功率(物理) 有机化学 化学
作者
K. Sujatha,N. P. G. Bhavani,V. Srividhya,V. Karthikeyan,N. Jayachitra
出处
期刊:Elsevier eBooks [Elsevier]
卷期号:: 115-138 被引量:3
标识
DOI:10.1016/b978-0-12-818014-3.00006-1
摘要

Effectively predicting flame shape and rationally developing corresponding safety measures have important guiding significance for improving combustion quality. Aimed at the problem that the traditional flame shape prediction method fails to predict the combustion quality in the next time period, this chapter proposes a long-term and short-term memory (LSTM) cyclic neural network prediction method. The LSTM method is based on actual monitoring data, including model building, structural design, model training, model prediction, and model optimization. The number of layers and batch size are used as parameters for the model. Experiments show that the LSTM model can effectively predict combustion quality and flue gas emissions in the next time period as compared to a recurrent neural network (RNN). It has higher applicability and reliability in flame shape-based combustion quality estimation using time series prediction. In addition to this model, image processing and artificial intelligence (AI) systems of the IoT can be used for evaluation in the field of energy production. These can help us to monitor and ultimately reduce emission of harmful gases to the atmosphere. Our proposed monitoring system is not only efficient but also cost-effective, and can help reduce the disastrous effects of greenhouse gas emissions and global warming.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助粥mi采纳,获得10
刚刚
天天完成签到 ,获得积分10
1秒前
XIEQ完成签到,获得积分10
2秒前
酷波er应助Yuchaoo采纳,获得10
2秒前
微微发布了新的文献求助20
2秒前
老衲发布了新的文献求助10
2秒前
phil发布了新的文献求助10
2秒前
七七完成签到,获得积分10
3秒前
体贴怜翠发布了新的文献求助10
3秒前
小白应助XIEQ采纳,获得10
5秒前
6秒前
9秒前
woobinhua完成签到,获得积分10
9秒前
今后应助brianzk1989采纳,获得10
9秒前
vv发布了新的文献求助10
10秒前
11秒前
11秒前
13秒前
沙砾完成签到,获得积分10
13秒前
MA发布了新的文献求助10
14秒前
14秒前
孤独绮梅完成签到 ,获得积分10
15秒前
16秒前
小白应助XIEQ采纳,获得10
16秒前
猪猪hero应助含辰惜采纳,获得10
16秒前
16秒前
12发布了新的文献求助10
17秒前
无极微光应助1454727550采纳,获得20
17秒前
jinzhen发布了新的文献求助10
17秒前
18秒前
猪小猪发布了新的文献求助10
18秒前
18秒前
18秒前
番番完成签到,获得积分10
18秒前
18秒前
19秒前
优美紫槐发布了新的文献求助10
21秒前
量子星尘发布了新的文献求助10
21秒前
猪四郎完成签到,获得积分10
22秒前
甘小平关注了科研通微信公众号
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5605657
求助须知:如何正确求助?哪些是违规求助? 4690241
关于积分的说明 14862785
捐赠科研通 4702214
什么是DOI,文献DOI怎么找? 2542212
邀请新用户注册赠送积分活动 1507831
关于科研通互助平台的介绍 1472132