西罗定理
数学
组合数学
简单(哲学)
素数(序理论)
补语(音乐)
群(周期表)
有限群
物理
认识论
表型
哲学
基因
化学
互补
量子力学
生物化学
标识
DOI:10.1142/s0219498821501152
摘要
Denote by [Formula: see text] the number of Sylow [Formula: see text]-subgroups of [Formula: see text]. For every subgroup [Formula: see text] of [Formula: see text], it is easy to see that [Formula: see text], but [Formula: see text] does not divide [Formula: see text] in general. Following [W. Guo and E. P. Vdovin, Number of Sylow subgroups in finite groups, J. Group Theory 21(4) (2018) 695–712], we say that a group [Formula: see text] satisfies DivSyl(p) if [Formula: see text] divides [Formula: see text] for every subgroup [Formula: see text] of [Formula: see text]. In this paper, we show that “almost for every” finite simple group [Formula: see text], there exists a prime [Formula: see text] such that [Formula: see text] does not satisfy DivSyl(p).
科研通智能强力驱动
Strongly Powered by AbleSci AI