Multi-View Spatial Attention Embedding for Vehicle Re-Identification

Softmax函数 计算机科学 判别式 人工智能 特征(语言学) 嵌入 光学(聚焦) 模式识别(心理学) 特征学习 观点 鉴定(生物学) 特征提取 机器学习 深度学习 生物 植物 光学 物理 哲学 艺术 视觉艺术 语言学
作者
Shangzhi Teng,Shiliang Zhang,Qingming Huang,Nicu Sebe
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:31 (2): 816-827 被引量:50
标识
DOI:10.1109/tcsvt.2020.2980283
摘要

Vehicle Re-Identification (Re-ID) is a challenging vision task mainly because the appearance of a vehicle varies dramatically under different viewpoints. Moreover, different vehicles with the same model and color commonly show similar appearance, thus are hard to be distinguished. To alleviate negative effects of viewpoint variance, we design a multi-view branch network where each branch learns a viewpoint-specific feature without parameter sharing. Being able to focus on a limited range of viewpoints, this viewpoint-specific feature performs substantially better than the general feature learned by an uniform network. To further differentiate visually similar vehicles, we strengthen the discriminative power on their subtle local differences by introducing a spatial attention model into each feature learning branch. The multi-view feature learning and spatial attention learning compose our neural network architecture, which is trained end to end with the softmax loss and triplet loss, respectively. We evaluate our methods on two large vehicle Re-ID datasets, i.e., VehicleID and VeRi-776, respectively. Extensive experiments show that our methods achieve promising performance. For example, we achieve mAP accuracy of 76.78% and 72.53% on VehicleID and VeRi-776 dataset respectively, substantially better than current state-of-the art.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
852应助peng采纳,获得10
刚刚
顾矜应助徐徐徐徐采纳,获得10
1秒前
huajinoob完成签到,获得积分10
1秒前
RNAPW发布了新的文献求助10
1秒前
热心蛋挞发布了新的文献求助10
1秒前
YANNAN完成签到,获得积分10
1秒前
SciGPT应助面条采纳,获得10
2秒前
2秒前
情怀应助dudu采纳,获得10
2秒前
上官若男应助haha采纳,获得10
2秒前
ZQ2415719发布了新的文献求助10
3秒前
善良傲柏发布了新的文献求助30
4秒前
华仔应助Andorchid采纳,获得10
5秒前
6秒前
李健的小迷弟应助笑笑采纳,获得10
6秒前
兰子君11完成签到 ,获得积分10
6秒前
一个兜兜完成签到,获得积分10
6秒前
noora发布了新的文献求助10
7秒前
7秒前
糊涂的大门完成签到,获得积分10
7秒前
李健应助龙虎山小天师采纳,获得10
7秒前
9秒前
开心寻凝完成签到,获得积分20
9秒前
今后应助洺全采纳,获得10
9秒前
9秒前
9秒前
orixero应助nancy采纳,获得30
10秒前
慕青应助莓啤汽采纳,获得10
10秒前
11秒前
11秒前
11秒前
小二郎应助虚幻妙竹采纳,获得10
12秒前
12秒前
jtyt发布了新的文献求助10
13秒前
13秒前
14秒前
xuan发布了新的文献求助10
14秒前
小炒肉发布了新的文献求助10
14秒前
意意发布了新的文献求助20
14秒前
zhou完成签到,获得积分10
15秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
지식생태학: 생태학, 죽은 지식을 깨우다 700
Neuromuscular and Electrodiagnostic Medicine Board Review 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3469240
求助须知:如何正确求助?哪些是违规求助? 3062268
关于积分的说明 9078513
捐赠科研通 2752652
什么是DOI,文献DOI怎么找? 1510516
科研通“疑难数据库(出版商)”最低求助积分说明 697909
邀请新用户注册赠送积分活动 697783