电解质
碳酸丙烯酯
化学
离子电导率
电导率
粘度
无机化学
离子液体
离子键合
摩尔电导率
锂(药物)
四氢呋喃
离子
化学工程
材料科学
有机化学
溶剂
物理化学
催化作用
复合材料
内分泌学
工程类
医学
电极
作者
Viktor Nilsson,Diana Bernin,Daniel Brandell,Kristina Edström,Patrik Johansson
出处
期刊:ChemPhysChem
[Wiley]
日期:2020-05-08
卷期号:21 (11): 1166-1176
被引量:30
标识
DOI:10.1002/cphc.202000153
摘要
Abstract To elucidate what properties control and practically limit ion transport in highly concentrated electrolytes (HCEs), the viscosity, ionic conductivity, ionicity, and transport numbers were studied for nine model electrolytes and connected to the rate capability in Li‐ion battery (LIB) cells. The electrolytes employed the LiTFSI salt in three molar ratio concentrations; 1 : 2, 1 : 4, and 1 : 16 (LiTFSI:X) vs . solvents (X) with different permittivities; tert ‐butyl methyl ether (MTBE), tetrahydrofuran (THF) and propylene carbonate (PC). While the low polarity MTBE creates liquid electrolytes, ion‐pairing limits the ionic conductivity despite extremely low viscosities. For the less concentrated 1 : 16 LiTFSI:MTBE and 1 : 16 LiTFSI:THF electrolytes the ionic diffusivities decrease with increased temperature, a sign of aggregation, but still their ionic conductivities and LIB performance increase. In general, the low ionic conductivity and high viscosity both limit the use of HCEs in LIBs, and no compensating mechanism seems to be present.
科研通智能强力驱动
Strongly Powered by AbleSci AI