Using bifurcation analysis we investigate the structure of the set of positive solutions for the coupled nonlinear Schrödinger system \begin{equation*} \begin{cases} -\Delta u_1+ u_1= u_1^3+\beta u_1u_2^2 & \text{in } \mathbb{R}^N,\\ -\Delta u_2+\lambda u_2=\mu u_2^3+\beta u_2u_1^2 &\text{in } \mathbb{R}^N,\\ u_1(x),u_2(x)\rightarrow 0 &\text{as } \vert x\vert\rightarrow+\infty, \end{cases} \end{equation*} where $N=1,2,3$, $\mu$ is a positive constant, $\lambda$ and $\beta$ are positive real parameters. We prove the existence of two two-dimensional continua $\mathcal{S}_1$ and $\mathcal{S}_2$ emanating from the two sets of semi-positive solutions which cover some regions in term of $(\beta,\lambda)\in \mathbb{R}_+^2$. To do this, we establish a multi-parameter unilateral global bifurcation theorem.