Vehicle Counting System using Deep Learning and Multi-Object Tracking Methods

计算机科学 交叉口(航空) 人工智能 车辆跟踪系统 计算机视觉 特征(语言学) 过程(计算) 跟踪(教育) 弹道 核(代数) 智能交通系统 目标检测 匹配(统计) 视频跟踪 比例(比率) 相似性(几何) 对象(语法) 卡尔曼滤波器 模式识别(心理学) 图像(数学) 数学 工程类 天文 组合数学 心理学 教育学 语言学 量子力学 统计 操作系统 土木工程 航空航天工程 哲学 物理
作者
Haoxiang Liang,Huansheng Song,Huaiyu Li,Zhe Dai
出处
期刊:Transportation Research Record [SAGE]
卷期号:2674 (4): 114-128 被引量:35
标识
DOI:10.1177/0361198120912742
摘要

Using deep learning technology and multi-object tracking method to count vehicles accurately in different traffic conditions is a hot research topic in the field of intelligent transportation. In this paper, first, a vehicle dataset from the perspective of highway surveillance cameras is constructed, and the vehicle detection model is obtained by training using the You Only Look Once (YOLO) version 3 network. Second, an improved multi-scale and multi-feature tracking algorithm based on a kernel correlation filter (KCF) algorithm is proposed to avoid the KCF extracting single features and single-scale defects. Combining the intersection over union (IoU) similarity measure and the row-column optimal association criterion proposed in this paper, matching strategy is used to process the vehicles that are not detected and wrongly detected, thereby obtaining complete vehicle trajectories. Finally, according to the trajectory of the vehicle, the traveling direction of the vehicle is automatically determined, and the setting position of the detecting line is automatically updated to obtain the vehicle count result accurately. Experiments were conducted in a variety of traffic scenes and compared with published data. The experimental results show that the proposed method achieves high accuracy of vehicle detection while maintaining accuracy and precision in tracking multiple objects, and obtains accurate vehicle counting results which can meet real-time processing requirements. The algorithm presented in this paper has practical application for vehicle counting in complex highway scenes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xie发布了新的文献求助10
1秒前
hj发布了新的文献求助10
2秒前
2秒前
无极微光应助zz采纳,获得20
2秒前
3秒前
3秒前
无极微光应助夏xia采纳,获得20
3秒前
3秒前
伶俐皮卡丘完成签到,获得积分10
4秒前
微笑语山发布了新的文献求助10
4秒前
magicQAQ发布了新的文献求助10
4秒前
4秒前
5秒前
6秒前
冷艳的烧鹅完成签到,获得积分10
6秒前
思源应助,645615616采纳,获得10
6秒前
荔枝发布了新的文献求助10
6秒前
7秒前
yin发布了新的文献求助10
7秒前
1124发布了新的文献求助10
8秒前
淡然士晋发布了新的文献求助10
8秒前
清脆的梦桃完成签到,获得积分10
8秒前
9秒前
9秒前
1157588380完成签到,获得积分10
9秒前
Violeta完成签到,获得积分10
9秒前
后来发布了新的文献求助10
9秒前
吴军霄完成签到,获得积分10
10秒前
小马甲应助hj采纳,获得10
10秒前
rehnatbztdghne5完成签到,获得积分10
10秒前
11秒前
zlx完成签到,获得积分10
11秒前
11秒前
黄婷发布了新的文献求助10
12秒前
12秒前
12秒前
12秒前
12秒前
Lusteri发布了新的文献求助10
13秒前
xiaoming完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5552820
求助须知:如何正确求助?哪些是违规求助? 4637591
关于积分的说明 14649723
捐赠科研通 4579329
什么是DOI,文献DOI怎么找? 2511568
邀请新用户注册赠送积分活动 1486590
关于科研通互助平台的介绍 1457559