已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Computer-assisted EFL writing and evaluations based on artificial intelligence: a case from a college reading and writing course

独创性 计算机科学 阅读(过程) 数学教育 期望理论 可靠性(半导体) 心理学 人工智能 社会心理学 创造力 政治学 量子力学 物理 功率(物理) 法学
作者
Wang Zhi-jie
出处
期刊:Library Hi Tech [Emerald (MCB UP)]
卷期号:40 (1): 80-97 被引量:62
标识
DOI:10.1108/lht-05-2020-0113
摘要

Purpose The aim of this study is to explore students' expectations and perceived effectiveness of computer-assisted review tools, and the differences in reliability and validity between human evaluation and automatic evaluation, to find a way to improve students' English writing ability. Design/methodology/approach Based on the expectancy disconfirmation theory (EDT) and Intelligent Computer-Assisted Language Learning (ICALL) theory, an experiment is conducted through the observation method, semistructured interview method and questionnaire survey method. In the experiment, respondents were asked to write and submit four essays on three online automated essay evaluation (AEE) systems in total, one essay every two weeks. Also, two teacher raters were invited to score the first and last papers of each student. The respondents' feedbacks were investigated to confirm the effectiveness of the AEE system; the evaluation results of the AEE systems and teachers were compared; descriptive statistics was used to analyze the experimental data. Findings The experiment revealed that the respondents held high expectations for the computer-assisted evaluation tools, and the effectiveness of computer scoring feedback on students was higher than that of teacher scoring feedback. Moreover, at the end of the writing project, the students' independent learning ability and English writing ability were significantly improved. Besides, there was a positive correlation between students' initial expectations of computer-assisted learning tools and the final evaluation of learning results. Originality/value The innovation lies in the use of observation methods, questionnaire survey methods, data analysis, and other methods for the experiment, and the combination of deep learning theory, EDT and descriptive statistics, which has particular reference value for future works.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
muyunyun完成签到,获得积分10
刚刚
kouryoufu发布了新的文献求助10
1秒前
大胆易巧完成签到 ,获得积分10
2秒前
wdd完成签到 ,获得积分10
5秒前
12秒前
生姜批发刘哥完成签到 ,获得积分10
12秒前
A,w携念e行ོ完成签到,获得积分10
13秒前
NexusExplorer应助Venus采纳,获得10
14秒前
idiom完成签到 ,获得积分10
14秒前
oleskarabach发布了新的文献求助10
15秒前
Jemma完成签到 ,获得积分10
16秒前
怜熙完成签到 ,获得积分10
21秒前
真的不会完成签到,获得积分10
21秒前
23秒前
Wei完成签到 ,获得积分10
25秒前
慕青应助科研通管家采纳,获得10
26秒前
jyy应助科研通管家采纳,获得10
26秒前
大模型应助科研通管家采纳,获得10
26秒前
orixero应助科研通管家采纳,获得10
26秒前
雍雍完成签到 ,获得积分10
26秒前
26秒前
香蕉觅云应助安心采纳,获得10
27秒前
kabane完成签到,获得积分10
30秒前
Jessica完成签到,获得积分10
31秒前
32秒前
小谢同学完成签到 ,获得积分10
32秒前
默初完成签到,获得积分10
33秒前
动听安筠完成签到 ,获得积分10
33秒前
IT-bird发布了新的文献求助10
35秒前
斯文败类应助活力依云采纳,获得10
40秒前
毛豆应助Venus采纳,获得10
41秒前
聆(*^_^*)发布了新的文献求助50
42秒前
42秒前
爱生气的小龙完成签到 ,获得积分10
44秒前
45秒前
哈哈hehe发布了新的文献求助10
45秒前
活力依云完成签到,获得积分20
46秒前
科研通AI2S应助jiayou采纳,获得10
47秒前
有川洋一完成签到 ,获得积分10
49秒前
50秒前
高分求助中
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Injection and Compression Molding Fundamentals 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
The Oxford Handbook of Educational Psychology 600
Mantodea of the World: Species Catalog Andrew M 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3422795
求助须知:如何正确求助?哪些是违规求助? 3023130
关于积分的说明 8903543
捐赠科研通 2710509
什么是DOI,文献DOI怎么找? 1486531
科研通“疑难数据库(出版商)”最低求助积分说明 687093
邀请新用户注册赠送积分活动 682312