Full-chip application of machine learning SRAFs on DRAM case using auto pattern selection

计算机科学 卷积神经网络 德拉姆 光学接近校正 进程窗口 深度学习 人工智能 人工神经网络 炸薯条 平版印刷术 加速 过程(计算) 计算机硬件 并行计算 艺术 电信 视觉艺术 操作系统
作者
Kunyuan Chen,Andy Lan,Richer Yang,Vincent Chen,Shulu Wang,Stella Zhang,Xiangru Xu,Andy Yang,Samuel Liu,Xiaolong Shi,Angmar Li,Stephen Hsu,Stanislas Baron,Gary Zhang,Rachit Kumar Gupta
标识
DOI:10.1117/12.2524051
摘要

As technology continues to scale aggressively, Sub-Resolution Assist Features (SRAF) are becoming an increasingly key resolution enhancement technique (RET) to maximize the process window enhancement. For the past few technology generations, lithographers have chosen to use a rules-based (RB-SRAF) or a model-based (MB-SRAF) approach to place assist features on the design. The inverse lithography solution, which provides the maximum process window entitlement, has always been out of reach for full-chip applications due to its very high computational cost. ASML has developed and demonstrated a deep learning SRAF placement methodology, Newron™ SRAF, which can provide the performance benefit of an inverse lithography solution while meeting the cycle time requirements for full-chip applications [1]. One of the biggest challenges for a deep learning approach is pattern selection for neural network training. To ensure pattern coverage for maximum accuracy while maintaining turn-around time (TAT,) a deep-learning-based Auto Pattern Selection (APS) tool is evaluated. APS works in conjunction with Newron SRAF to provide the optimal lithography solution. In this paper, Newron SRAF is used on a DRAM layer. A Deep Convolutional Neural Network (DCNN) is trained using the target images and Continuous Transmission Mask (CTM) images. CTM images are gray tone images that are fully optimized by the Tachyon inverse mask optimization engine. Representative patterns selected by APS are used to train the neural network. The trained neural network generates SRAFs on the full-chip and then Tachyon OPC+ is performed to correct main and SRAF simultaneously. The neural network trained by APS patterns is compared with those trained by patterns from manual selection and multiple random selections to demonstrate its robustness on pattern coverage. Tachyon Hierarchical OPC+ (HScan+) is used to apply Newron SRAF at full-chip level in order to keep consistency and increase speed. Full-chip simulation results from Newron SRAF are compared with the baseline OPC flow using RBSRAF and MB-SRAF. The Newron SRAF flow shows significant improvements in NILS and PV band over the baseline flows. This whole flow including APS, Newron SRAF and full-chip HScan+ OPC enables the inverse mask optimization on full-chip level to achieve superior mask performance with production-affordable TAT.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
端庄的紫发布了新的文献求助100
1秒前
高玉峰发布了新的文献求助10
1秒前
2秒前
2秒前
匹诺曹完成签到,获得积分10
2秒前
3秒前
4秒前
4秒前
俭朴雪兰完成签到,获得积分10
4秒前
书生发布了新的文献求助30
4秒前
5秒前
研友_8RyzBZ发布了新的文献求助10
6秒前
Zenia发布了新的文献求助10
6秒前
Nell发布了新的文献求助10
7秒前
orixero应助橙酒采纳,获得10
7秒前
成就的咖啡完成签到 ,获得积分10
8秒前
FadeSv完成签到,获得积分10
8秒前
zhangyk发布了新的文献求助10
9秒前
科研通AI6应助高玉峰采纳,获得10
9秒前
优雅的笑阳完成签到,获得积分10
9秒前
酷炫的谷丝完成签到,获得积分10
10秒前
10秒前
科研通AI2S应助coldzer0采纳,获得10
11秒前
量子星尘发布了新的文献求助10
13秒前
伶俐的绝山关注了科研通微信公众号
14秒前
聪明的鞅发布了新的文献求助10
15秒前
haly完成签到 ,获得积分10
15秒前
忧郁的平安完成签到,获得积分10
16秒前
彭于晏应助高玉峰采纳,获得10
18秒前
18秒前
平常的苡完成签到,获得积分10
19秒前
清河海风完成签到,获得积分10
19秒前
20秒前
啦啦啦啦完成签到 ,获得积分10
21秒前
无限的晓蓝关注了科研通微信公众号
22秒前
zhazd发布了新的文献求助10
23秒前
24秒前
25秒前
橙酒发布了新的文献求助10
26秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5615265
求助须知:如何正确求助?哪些是违规求助? 4700145
关于积分的说明 14906831
捐赠科研通 4741546
什么是DOI,文献DOI怎么找? 2548008
邀请新用户注册赠送积分活动 1511727
关于科研通互助平台的介绍 1473781