Full-chip application of machine learning SRAFs on DRAM case using auto pattern selection

计算机科学 卷积神经网络 德拉姆 光学接近校正 进程窗口 深度学习 人工智能 人工神经网络 炸薯条 平版印刷术 加速 过程(计算) 计算机硬件 并行计算 艺术 电信 视觉艺术 操作系统
作者
Kunyuan Chen,Andy Lan,Richer Yang,Vincent Chen,Shulu Wang,Stella Zhang,Xiangru Xu,Andy Yang,Samuel Liu,Xiaolong Shi,Angmar Li,Stephen Hsu,Stanislas Baron,Gary Zhang,Rachit Kumar Gupta
标识
DOI:10.1117/12.2524051
摘要

As technology continues to scale aggressively, Sub-Resolution Assist Features (SRAF) are becoming an increasingly key resolution enhancement technique (RET) to maximize the process window enhancement. For the past few technology generations, lithographers have chosen to use a rules-based (RB-SRAF) or a model-based (MB-SRAF) approach to place assist features on the design. The inverse lithography solution, which provides the maximum process window entitlement, has always been out of reach for full-chip applications due to its very high computational cost. ASML has developed and demonstrated a deep learning SRAF placement methodology, Newron™ SRAF, which can provide the performance benefit of an inverse lithography solution while meeting the cycle time requirements for full-chip applications [1]. One of the biggest challenges for a deep learning approach is pattern selection for neural network training. To ensure pattern coverage for maximum accuracy while maintaining turn-around time (TAT,) a deep-learning-based Auto Pattern Selection (APS) tool is evaluated. APS works in conjunction with Newron SRAF to provide the optimal lithography solution. In this paper, Newron SRAF is used on a DRAM layer. A Deep Convolutional Neural Network (DCNN) is trained using the target images and Continuous Transmission Mask (CTM) images. CTM images are gray tone images that are fully optimized by the Tachyon inverse mask optimization engine. Representative patterns selected by APS are used to train the neural network. The trained neural network generates SRAFs on the full-chip and then Tachyon OPC+ is performed to correct main and SRAF simultaneously. The neural network trained by APS patterns is compared with those trained by patterns from manual selection and multiple random selections to demonstrate its robustness on pattern coverage. Tachyon Hierarchical OPC+ (HScan+) is used to apply Newron SRAF at full-chip level in order to keep consistency and increase speed. Full-chip simulation results from Newron SRAF are compared with the baseline OPC flow using RBSRAF and MB-SRAF. The Newron SRAF flow shows significant improvements in NILS and PV band over the baseline flows. This whole flow including APS, Newron SRAF and full-chip HScan+ OPC enables the inverse mask optimization on full-chip level to achieve superior mask performance with production-affordable TAT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助科研小白采纳,获得10
刚刚
Qingwenxin完成签到,获得积分10
刚刚
我是老大应助yyyyy采纳,获得30
刚刚
迷人的如冰完成签到,获得积分10
刚刚
1秒前
zzy发布了新的文献求助10
1秒前
我是微风完成签到,获得积分10
1秒前
追寻的凡松完成签到,获得积分10
1秒前
1秒前
2秒前
贪玩丸子完成签到,获得积分10
2秒前
oohQoo完成签到,获得积分10
2秒前
尹善冰完成签到,获得积分10
3秒前
闲听花落完成签到,获得积分10
3秒前
215858687完成签到,获得积分10
4秒前
韩明轩完成签到 ,获得积分10
4秒前
凝雁完成签到,获得积分10
4秒前
4秒前
nano_yan完成签到,获得积分10
5秒前
阮潜关注了科研通微信公众号
5秒前
小刺猬发布了新的文献求助10
6秒前
JohnW完成签到,获得积分10
6秒前
6秒前
Sheldon应助gegi采纳,获得10
6秒前
6秒前
abc完成签到 ,获得积分10
7秒前
欧阳慕山完成签到,获得积分10
7秒前
高兴可乐发布了新的文献求助10
7秒前
科研小白完成签到,获得积分10
8秒前
精明松思发布了新的文献求助10
8秒前
豆腐完成签到,获得积分10
9秒前
等等完成签到,获得积分10
9秒前
菠萝冰完成签到,获得积分10
9秒前
10秒前
库库写论文完成签到,获得积分10
10秒前
陈进发布了新的文献求助10
10秒前
雨木目完成签到,获得积分10
10秒前
Lemon完成签到 ,获得积分10
10秒前
10秒前
bkagyin应助复杂黑夜采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5094100
求助须知:如何正确求助?哪些是违规求助? 4307441
关于积分的说明 13419977
捐赠科研通 4133860
什么是DOI,文献DOI怎么找? 2264816
邀请新用户注册赠送积分活动 1268265
关于科研通互助平台的介绍 1204264