Full-chip application of machine learning SRAFs on DRAM case using auto pattern selection

计算机科学 卷积神经网络 德拉姆 光学接近校正 进程窗口 深度学习 人工智能 人工神经网络 炸薯条 平版印刷术 加速 过程(计算) 计算机硬件 并行计算 艺术 电信 视觉艺术 操作系统
作者
Kunyuan Chen,Andy Lan,Richer Yang,Vincent Chen,Shulu Wang,Stella Zhang,Xiangru Xu,Andy Yang,Samuel Liu,Xiaolong Shi,Angmar Li,Stephen Hsu,Stanislas Baron,Gary Zhang,Rachit Kumar Gupta
标识
DOI:10.1117/12.2524051
摘要

As technology continues to scale aggressively, Sub-Resolution Assist Features (SRAF) are becoming an increasingly key resolution enhancement technique (RET) to maximize the process window enhancement. For the past few technology generations, lithographers have chosen to use a rules-based (RB-SRAF) or a model-based (MB-SRAF) approach to place assist features on the design. The inverse lithography solution, which provides the maximum process window entitlement, has always been out of reach for full-chip applications due to its very high computational cost. ASML has developed and demonstrated a deep learning SRAF placement methodology, Newron™ SRAF, which can provide the performance benefit of an inverse lithography solution while meeting the cycle time requirements for full-chip applications [1]. One of the biggest challenges for a deep learning approach is pattern selection for neural network training. To ensure pattern coverage for maximum accuracy while maintaining turn-around time (TAT,) a deep-learning-based Auto Pattern Selection (APS) tool is evaluated. APS works in conjunction with Newron SRAF to provide the optimal lithography solution. In this paper, Newron SRAF is used on a DRAM layer. A Deep Convolutional Neural Network (DCNN) is trained using the target images and Continuous Transmission Mask (CTM) images. CTM images are gray tone images that are fully optimized by the Tachyon inverse mask optimization engine. Representative patterns selected by APS are used to train the neural network. The trained neural network generates SRAFs on the full-chip and then Tachyon OPC+ is performed to correct main and SRAF simultaneously. The neural network trained by APS patterns is compared with those trained by patterns from manual selection and multiple random selections to demonstrate its robustness on pattern coverage. Tachyon Hierarchical OPC+ (HScan+) is used to apply Newron SRAF at full-chip level in order to keep consistency and increase speed. Full-chip simulation results from Newron SRAF are compared with the baseline OPC flow using RBSRAF and MB-SRAF. The Newron SRAF flow shows significant improvements in NILS and PV band over the baseline flows. This whole flow including APS, Newron SRAF and full-chip HScan+ OPC enables the inverse mask optimization on full-chip level to achieve superior mask performance with production-affordable TAT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
好玩ab完成签到,获得积分10
刚刚
1秒前
1秒前
小小完成签到 ,获得积分10
2秒前
Priority完成签到,获得积分10
2秒前
硬汉的长强穴完成签到,获得积分10
3秒前
gi发布了新的文献求助10
3秒前
4秒前
顾矜应助阚曦采纳,获得30
4秒前
地沙坦完成签到,获得积分10
4秒前
CC完成签到 ,获得积分10
5秒前
5秒前
5秒前
frank发布了新的文献求助10
7秒前
科目三应助知识探索家采纳,获得10
8秒前
科研通AI2S应助TT2022采纳,获得10
9秒前
DXY发布了新的文献求助10
9秒前
无心的浩轩完成签到,获得积分10
11秒前
unchanged完成签到,获得积分10
11秒前
微风发布了新的文献求助10
11秒前
懵懂的毛豆应助kd采纳,获得20
12秒前
hukun100完成签到,获得积分10
12秒前
御风甜咖啡完成签到,获得积分10
13秒前
小沈发布了新的文献求助10
15秒前
frank完成签到,获得积分20
15秒前
大个应助温柔的海安采纳,获得10
15秒前
大气指甲油完成签到,获得积分10
17秒前
仰望苍穹完成签到,获得积分20
17秒前
鲤鱼一手完成签到,获得积分10
19秒前
yynfyy发布了新的文献求助10
19秒前
王鹏飞完成签到,获得积分10
19秒前
花已烬完成签到,获得积分10
19秒前
细腻烙发布了新的文献求助10
19秒前
小魏完成签到,获得积分10
20秒前
21秒前
21秒前
21秒前
领导范儿应助frank采纳,获得10
22秒前
Guochunbao完成签到,获得积分10
23秒前
ding应助科研小白采纳,获得10
24秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965984
求助须知:如何正确求助?哪些是违规求助? 3511325
关于积分的说明 11157405
捐赠科研通 3245882
什么是DOI,文献DOI怎么找? 1793218
邀请新用户注册赠送积分活动 874262
科研通“疑难数据库(出版商)”最低求助积分说明 804286