Full-chip application of machine learning SRAFs on DRAM case using auto pattern selection

计算机科学 卷积神经网络 德拉姆 光学接近校正 进程窗口 深度学习 人工智能 人工神经网络 炸薯条 平版印刷术 加速 过程(计算) 计算机硬件 并行计算 电信 操作系统 艺术 视觉艺术
作者
Kunyuan Chen,Andy Lan,Richer Yang,Vincent Chen,Shulu Wang,Stella Zhang,Xiangru Xu,Andy Yang,Samuel Liu,Xiaolong Shi,Angmar Li,Stephen Hsu,Stanislas Baron,Gary Zhang,Rachit Kumar Gupta
标识
DOI:10.1117/12.2524051
摘要

As technology continues to scale aggressively, Sub-Resolution Assist Features (SRAF) are becoming an increasingly key resolution enhancement technique (RET) to maximize the process window enhancement. For the past few technology generations, lithographers have chosen to use a rules-based (RB-SRAF) or a model-based (MB-SRAF) approach to place assist features on the design. The inverse lithography solution, which provides the maximum process window entitlement, has always been out of reach for full-chip applications due to its very high computational cost. ASML has developed and demonstrated a deep learning SRAF placement methodology, Newron™ SRAF, which can provide the performance benefit of an inverse lithography solution while meeting the cycle time requirements for full-chip applications [1]. One of the biggest challenges for a deep learning approach is pattern selection for neural network training. To ensure pattern coverage for maximum accuracy while maintaining turn-around time (TAT,) a deep-learning-based Auto Pattern Selection (APS) tool is evaluated. APS works in conjunction with Newron SRAF to provide the optimal lithography solution. In this paper, Newron SRAF is used on a DRAM layer. A Deep Convolutional Neural Network (DCNN) is trained using the target images and Continuous Transmission Mask (CTM) images. CTM images are gray tone images that are fully optimized by the Tachyon inverse mask optimization engine. Representative patterns selected by APS are used to train the neural network. The trained neural network generates SRAFs on the full-chip and then Tachyon OPC+ is performed to correct main and SRAF simultaneously. The neural network trained by APS patterns is compared with those trained by patterns from manual selection and multiple random selections to demonstrate its robustness on pattern coverage. Tachyon Hierarchical OPC+ (HScan+) is used to apply Newron SRAF at full-chip level in order to keep consistency and increase speed. Full-chip simulation results from Newron SRAF are compared with the baseline OPC flow using RBSRAF and MB-SRAF. The Newron SRAF flow shows significant improvements in NILS and PV band over the baseline flows. This whole flow including APS, Newron SRAF and full-chip HScan+ OPC enables the inverse mask optimization on full-chip level to achieve superior mask performance with production-affordable TAT.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鲤鱼无心发布了新的文献求助30
1秒前
1秒前
正函数完成签到,获得积分10
1秒前
年纪阿瑟东完成签到,获得积分10
2秒前
anbiii发布了新的文献求助10
2秒前
洁净无心发布了新的文献求助10
4秒前
4秒前
樱_花qxy完成签到,获得积分10
5秒前
QQ发布了新的文献求助10
5秒前
6秒前
6秒前
等等发布了新的文献求助30
8秒前
满眼月月发布了新的文献求助10
8秒前
小果叮完成签到,获得积分10
9秒前
10秒前
11秒前
hhhhhhh发布了新的文献求助30
12秒前
reikakakaka完成签到,获得积分10
12秒前
执着访文应助anbiii采纳,获得20
12秒前
感谢大佬发布了新的文献求助20
14秒前
wangteng完成签到,获得积分20
14秒前
斯文败类应助酒石酸采纳,获得10
16秒前
gym完成签到,获得积分10
17秒前
cff发布了新的文献求助10
17秒前
信仰xy应助南瓜难采纳,获得50
17秒前
18秒前
鲤鱼无心完成签到,获得积分10
19秒前
Ryuu发布了新的文献求助10
19秒前
imi发布了新的文献求助10
20秒前
虚拟的眼神完成签到,获得积分10
20秒前
小蘑菇应助勤恳友灵采纳,获得30
21秒前
ddaikk发布了新的文献求助10
21秒前
22秒前
tdd应助等等采纳,获得10
22秒前
22秒前
幸福大白发布了新的文献求助10
22秒前
范仪彬发布了新的文献求助10
23秒前
斯文败类应助lll采纳,获得10
23秒前
大龙哥886完成签到,获得积分10
23秒前
25秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149808
求助须知:如何正确求助?哪些是违规求助? 2800840
关于积分的说明 7842296
捐赠科研通 2458378
什么是DOI,文献DOI怎么找? 1308434
科研通“疑难数据库(出版商)”最低求助积分说明 628510
版权声明 601721