亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Full-chip application of machine learning SRAFs on DRAM case using auto pattern selection

计算机科学 卷积神经网络 德拉姆 光学接近校正 进程窗口 深度学习 人工智能 人工神经网络 炸薯条 平版印刷术 加速 过程(计算) 计算机硬件 并行计算 艺术 电信 视觉艺术 操作系统
作者
Kunyuan Chen,Andy Lan,Richer Yang,Vincent Chen,Shulu Wang,Stella Zhang,Xiangru Xu,Andy Yang,Samuel Liu,Xiaolong Shi,Angmar Li,Stephen Hsu,Stanislas Baron,Gary Zhang,Rachit Kumar Gupta
标识
DOI:10.1117/12.2524051
摘要

As technology continues to scale aggressively, Sub-Resolution Assist Features (SRAF) are becoming an increasingly key resolution enhancement technique (RET) to maximize the process window enhancement. For the past few technology generations, lithographers have chosen to use a rules-based (RB-SRAF) or a model-based (MB-SRAF) approach to place assist features on the design. The inverse lithography solution, which provides the maximum process window entitlement, has always been out of reach for full-chip applications due to its very high computational cost. ASML has developed and demonstrated a deep learning SRAF placement methodology, Newron™ SRAF, which can provide the performance benefit of an inverse lithography solution while meeting the cycle time requirements for full-chip applications [1]. One of the biggest challenges for a deep learning approach is pattern selection for neural network training. To ensure pattern coverage for maximum accuracy while maintaining turn-around time (TAT,) a deep-learning-based Auto Pattern Selection (APS) tool is evaluated. APS works in conjunction with Newron SRAF to provide the optimal lithography solution. In this paper, Newron SRAF is used on a DRAM layer. A Deep Convolutional Neural Network (DCNN) is trained using the target images and Continuous Transmission Mask (CTM) images. CTM images are gray tone images that are fully optimized by the Tachyon inverse mask optimization engine. Representative patterns selected by APS are used to train the neural network. The trained neural network generates SRAFs on the full-chip and then Tachyon OPC+ is performed to correct main and SRAF simultaneously. The neural network trained by APS patterns is compared with those trained by patterns from manual selection and multiple random selections to demonstrate its robustness on pattern coverage. Tachyon Hierarchical OPC+ (HScan+) is used to apply Newron SRAF at full-chip level in order to keep consistency and increase speed. Full-chip simulation results from Newron SRAF are compared with the baseline OPC flow using RBSRAF and MB-SRAF. The Newron SRAF flow shows significant improvements in NILS and PV band over the baseline flows. This whole flow including APS, Newron SRAF and full-chip HScan+ OPC enables the inverse mask optimization on full-chip level to achieve superior mask performance with production-affordable TAT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xq完成签到,获得积分10
5秒前
领导范儿应助jyz98采纳,获得30
7秒前
科研通AI6应助bbbccc采纳,获得10
20秒前
38秒前
魔幻友菱完成签到 ,获得积分10
40秒前
58秒前
jyz98发布了新的文献求助30
1分钟前
1分钟前
1分钟前
xin发布了新的文献求助10
1分钟前
小熊发布了新的文献求助10
1分钟前
桐桐应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
jyz98完成签到,获得积分20
1分钟前
呵呵贺哈完成签到 ,获得积分10
1分钟前
weibo完成签到,获得积分10
1分钟前
2分钟前
yb完成签到,获得积分10
2分钟前
hhhhhhh发布了新的文献求助10
2分钟前
hhhhhhh完成签到,获得积分20
2分钟前
Jx完成签到 ,获得积分10
2分钟前
2分钟前
Yuki完成签到 ,获得积分10
2分钟前
Kevin发布了新的文献求助10
3分钟前
手撕英语关注了科研通微信公众号
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
Kevin发布了新的文献求助10
3分钟前
3分钟前
手撕英语发布了新的文献求助30
4分钟前
Orange应助璇3采纳,获得50
4分钟前
4分钟前
Perry完成签到,获得积分0
4分钟前
4分钟前
jlw发布了新的文献求助10
4分钟前
4分钟前
兮豫完成签到 ,获得积分10
4分钟前
4分钟前
qiuer7应助jlw采纳,获得10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Practical Methods for Aircraft and Rotorcraft Flight Control Design: An Optimization-Based Approach 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 831
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5413257
求助须知:如何正确求助?哪些是违规求助? 4530416
关于积分的说明 14122912
捐赠科研通 4445392
什么是DOI,文献DOI怎么找? 2439191
邀请新用户注册赠送积分活动 1431244
关于科研通互助平台的介绍 1408710