Physiologically-based Pharmacokinetic (PBPK) Modelling of Transporter Mediated Drug Absorption, Clearance and Drug-drug Interactions

基于生理学的药代动力学模型 药代动力学 药理学 药品 化学 生物信息学 体内 计算生物学 运输机 医学 生物 生物化学 生物技术 基因
作者
Kunal S. Taskar,Isobel Harada,Ravindra V. Alluri
出处
期刊:Current Drug Metabolism [Bentham Science]
卷期号:22 (7): 523-531 被引量:15
标识
DOI:10.2174/1389200221999210101233340
摘要

Membrane transporters play an important role in intestinal absorption, distribution and clearance of drugs. Additionally transporters along with enzymes regulate tissue exposures (e.g. liver, kidney and brain), which are important for safety and efficacy considerations. Early identification of transporters involved guides generation of in vitro and in vivo data needed to gain mechanistic understanding on the role of transporters in organ clearance, tissue exposures and enables development of physiological-based pharmacokinetic (PBPK) models. A lot of progress has been made in developing several in vitro assay systems and mechanistic in silico models to determine kinetic parameters for transporters, which are incorporated into PBPK models. Although, intrinsic clearance and inhibition data from in vitro systems generally tend to underpredict in vivo clearance and magnitude of drug-drug interactions (DDIs), empirical scaling factors derived from a sizable dataset are often used to offset underpredictions. PBPK models are increasing used to predict the impact of transporters on intestinal absorption, clearance, victim and perpetrator DDIs prior to first in human clinical trials. The models are often refined when clinical data is available and are used to predict pharmacokinetics in untested scenarios such as the impact of polymorphisms, ontogeny, ethnicity, disease states and DDIs with other perpetrator drugs. The aim of this review is to provide an overview of (i) regulatory requirements around transporters, (ii) in vitro systems and their limitations in predicting transporter mediated drug disposition and DDIs, (iii) PBPK modelling tactics and case studies used for internal decision making and/or for regulatory submissions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
追寻书白完成签到,获得积分20
刚刚
晚街听风完成签到 ,获得积分10
1秒前
1秒前
感觉他香香的完成签到 ,获得积分10
2秒前
2秒前
牛牛要当院士喽完成签到,获得积分10
2秒前
结实的老虎完成签到,获得积分10
4秒前
坚强丹雪完成签到,获得积分10
6秒前
8秒前
10秒前
WZ0904发布了新的文献求助10
12秒前
狂野静曼完成签到 ,获得积分10
13秒前
武映易完成签到 ,获得积分10
15秒前
zzz发布了新的文献求助10
16秒前
17秒前
大蒜味酸奶钊完成签到 ,获得积分10
17秒前
鱼宇纸完成签到 ,获得积分10
17秒前
LEE完成签到,获得积分20
17秒前
17秒前
Ava应助无限的绿真采纳,获得10
19秒前
小马甲应助xiongdi521采纳,获得10
19秒前
科研通AI5应助陶醉觅夏采纳,获得200
22秒前
憨鬼憨切发布了新的文献求助10
22秒前
22秒前
宇宙暴龙战士暴打魔法少女完成签到,获得积分10
24秒前
25秒前
26秒前
hh应助科研通管家采纳,获得10
26秒前
科研通AI5应助科研通管家采纳,获得10
26秒前
Ava应助科研通管家采纳,获得10
26秒前
Eva完成签到,获得积分10
26秒前
传奇3应助科研通管家采纳,获得10
26秒前
斯文败类应助科研通管家采纳,获得10
26秒前
爆米花应助科研通管家采纳,获得10
27秒前
科研通AI5应助科研通管家采纳,获得10
27秒前
搜集达人应助科研通管家采纳,获得10
27秒前
思源应助科研通管家采纳,获得10
27秒前
汉堡包应助科研通管家采纳,获得10
27秒前
清爽老九应助科研通管家采纳,获得20
27秒前
传奇3应助科研通管家采纳,获得10
27秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849