Nomogram based on radiomics analysis of primary breast cancer ultrasound images: prediction of axillary lymph node tumor burden in patients

医学 列线图 乳腺癌 无线电技术 放射科 逻辑回归 淋巴结 神经组阅片室 队列 超声波 癌症 肿瘤科 内科学 神经学 精神科
作者
Yuanjing Gao,Yanwen Luo,Chenyang Zhao,Mengsu Xiao,Li Ma,Wenbo Li,Jing Qin,Qingli Zhu,Yuxin Jiang
出处
期刊:European Radiology [Springer Science+Business Media]
卷期号:31 (2): 928-937 被引量:44
标识
DOI:10.1007/s00330-020-07181-1
摘要

To establish a prediction model for evaluating the axillary lymph node (ALN) status of patients with T1/T2 invasive breast cancer based on radiomics analysis of US images of primary breast lesions. Between August 2016 and November 2018, a total of 343 patients with histologically proven malignant breast tumors were included in this study and randomly assigned to the training and validation groups at a ratio of 7:3. ALN tumor burden was defined as low (< 3 metastatic ALNs) or high (≥ 3 metastatic ALNs). Radiomics features were obtained using the PyRadiomics package, and the radiomics score was established by least absolute shrinkage and selection operator regression. A nomogram combining the breast cancer US radiomics score with patient age and lesion size was generated based on the multivariate logistic regression results. In the training and validation cohorts, 29.1% (69/237) and 32.08% (34/106) of patients were pathologically diagnosed with more than 2 metastatic ALNs, respectively. The radiomics score consisted of 16 US features, and patient age and lesion diameter identified by US were included to construct the model. The AUC of the model was 0.846 (95% CI, 0.790–0.902) for the training cohort and 0.733 (95% CI, 0.613–0.852) for the validation cohort. The calibration curves showed good agreement between the predictions and observations. Our novel nomogram demonstrates high accuracy in predicting ALN tumor burden in breast cancer patients. We also suggest further development of PyRadiomics to improve US radiomics. • A nomogram based on US was developed to predict ALN tumor burden (low, < 3 metastatic ALNs; high, ≥ 3 metastatic ALNs). • The nomogram could assist clinicians in evaluating treatment strategies for T1/T2 invasive breast cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
妖孽的二狗完成签到 ,获得积分10
1秒前
传奇3应助超级的鹅采纳,获得10
4秒前
超帅的心锁完成签到,获得积分10
5秒前
Sss发布了新的文献求助10
6秒前
zzzq完成签到,获得积分10
6秒前
6秒前
7秒前
Kakoala完成签到,获得积分10
7秒前
默默地读文献应助lyn采纳,获得10
9秒前
11秒前
小乔发布了新的文献求助10
11秒前
hhan发布了新的文献求助10
14秒前
科研通AI5应助博修采纳,获得10
14秒前
16秒前
科研通AI5应助力量采纳,获得10
18秒前
sanch完成签到 ,获得积分10
19秒前
科研通AI5应助科研通管家采纳,获得10
19秒前
烟花应助科研通管家采纳,获得10
19秒前
maox1aoxin应助科研通管家采纳,获得30
19秒前
mmmio应助科研通管家采纳,获得10
19秒前
19秒前
顾矜应助科研通管家采纳,获得10
20秒前
20秒前
20秒前
20秒前
mmmio应助科研通管家采纳,获得10
20秒前
神仙师姐应助科研通管家采纳,获得10
20秒前
Owen应助科研通管家采纳,获得10
20秒前
20秒前
20秒前
Ava应助科研通管家采纳,获得10
20秒前
liu应助科研通管家采纳,获得10
20秒前
小蘑菇应助科研通管家采纳,获得10
20秒前
wanci应助科研通管家采纳,获得200
21秒前
乐乐应助科研通管家采纳,获得10
21秒前
liu应助科研通管家采纳,获得10
21秒前
Owen应助科研通管家采纳,获得10
21秒前
21秒前
21秒前
科研通AI5应助科研通管家采纳,获得10
21秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3670364
求助须知:如何正确求助?哪些是违规求助? 3227602
关于积分的说明 9776258
捐赠科研通 2937754
什么是DOI,文献DOI怎么找? 1609605
邀请新用户注册赠送积分活动 760402
科研通“疑难数据库(出版商)”最低求助积分说明 735836