Reinforcement Learning for IoT Security: A Comprehensive Survey

计算机科学 强化学习 物联网 计算机安全 人气 人工智能 心理学 社会心理学
作者
Aashma Uprety,Danda B. Rawat
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:8 (11): 8693-8706 被引量:120
标识
DOI:10.1109/jiot.2020.3040957
摘要

The number of connected smart devices has been increasing exponentially for different Internet-of-Things (IoT) applications. Security has been a long run challenge in the IoT systems which has many attack vectors, security flaws and vulnerabilities. Securing billions of connected devices in IoT is a must task to realize the full potential of IoT applications. Recently, researchers have proposed many security solutions for IoT. Machine learning has been proposed as one of the emerging solutions for IoT security and reinforcement learning (RL) is gaining more popularity for securing IoT systems. RL, unlike other machine learning techniques, can learn the environment by having minimum information about the parameters to be learned. It solves the optimization problem by interacting with the environment adapting the parameters on the fly. In this article, we present an comprehensive survey of different types of cyberattacks against different IoT systems and then we present RL and deep RL-based security solutions to combat those different types of attacks in different IoT systems. Furthermore, we present the RL for securing CPS systems (i.e., IoT with feedback and control), such as smart grid and smart transportation system. The recent important attacks and countermeasures using RL in IoT are also summarized in the form of tables. With this article, readers can have a more thorough understanding of IoT security attacks and countermeasures using RL, as well as research trends in this area.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
林俊杰发布了新的文献求助10
1秒前
英勇海秋完成签到 ,获得积分10
2秒前
3秒前
大牛顿完成签到,获得积分10
7秒前
8秒前
10秒前
佟莫言完成签到 ,获得积分10
10秒前
大个应助张子珍采纳,获得10
11秒前
11秒前
12秒前
13秒前
今后应助沈佳琪采纳,获得10
14秒前
林俊杰完成签到,获得积分10
14秒前
孙同学完成签到,获得积分10
14秒前
包容芯完成签到 ,获得积分10
15秒前
xxx完成签到,获得积分10
16秒前
孙同学发布了新的文献求助10
17秒前
雨季发布了新的文献求助10
17秒前
20秒前
20秒前
Ddddd完成签到,获得积分10
21秒前
22秒前
27秒前
elisa828完成签到,获得积分10
27秒前
XJ完成签到,获得积分10
27秒前
28秒前
星辰大海应助沈佳琪采纳,获得10
31秒前
张子珍发布了新的文献求助10
32秒前
似是而非发布了新的文献求助30
32秒前
雪白鸿涛完成签到,获得积分10
33秒前
科研通AI2S应助科研通管家采纳,获得10
34秒前
完美世界应助科研通管家采纳,获得10
34秒前
斯文败类应助科研通管家采纳,获得10
34秒前
情怀应助科研通管家采纳,获得10
34秒前
今后应助论文多多采纳,获得10
34秒前
英俊的铭应助科研通管家采纳,获得10
34秒前
领导范儿应助科研通管家采纳,获得10
34秒前
穆紫应助科研通管家采纳,获得20
35秒前
寻道图强应助科研通管家采纳,获得30
35秒前
科研通AI2S应助科研通管家采纳,获得10
35秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134917
求助须知:如何正确求助?哪些是违规求助? 2785800
关于积分的说明 7774138
捐赠科研通 2441635
什么是DOI,文献DOI怎么找? 1298038
科研通“疑难数据库(出版商)”最低求助积分说明 625075
版权声明 600825