Prediction of sublingual immunotherapy efficacy in allergic rhinitis by serum metabolomics analysis

代谢组学 代谢物 OPL公司 医学 药理学 代谢组 内科学 脂肪酸代谢 生物标志物 化学 色谱法 新陈代谢 生物化学 分子 氢键 有机化学
作者
Shaobing Xie,Sijie Jiang,Hua Zhang,Fengjun Wang,Yongzhen Liu,Yongchuan She,Qiancheng Jing,Kelei Gao,Ruohao Fan,Shumin Xie,Zhihai Xie,Weihong Jiang
出处
期刊:International Immunopharmacology [Elsevier BV]
卷期号:90: 107211-107211 被引量:32
标识
DOI:10.1016/j.intimp.2020.107211
摘要

Allergen-specific immunotherapy (ASIT) is currently the only therapy for allergic rhinitis (AR) that can induce immune tolerance to allergens. However, the course of ASIT is long and there is no objective biomarker to predict treatment efficacy. The present study aimed to explore potential biomarkers predictive of efficacy of AIT based on serum metabolomics profiles. This prospective study recruited 72 consecutive eligible patients who were assigned to receive sublingual immunotherapy (SLIT). Serum samples were collected prior to SLIT and utilized to obtain metabolomics profiling by applying ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS). Treatment response was determined 3 years after SLIT, and patients were divided into effective group and ineffective group. Orthogonal partial least square-discriminate analysis (OPLS-DA) was performed to evaluate the metabolite differences between two groups. Sixty-eight patients completed the whole SLIT, 39 patients were categorized into effective group and 29 patients were classified into ineffective group. A total of 539 metabolites were obtained, and 197 of which were identified as known substances. Using these 197 known metabolites, the OPLS-DA results showed that effective group and ineffective group exhibited distinctive metabolite signatures and metabolic pathways. Six metabolites including lactic acid, ornithine, linolenic acid, creatinine, arachidonic acid and sphingosine were identified to exhibit good performance in predicting the efficacy of SLIT, and these metabolite changes mainly involved glycolysis and pyruvate metabolism, arginine and proline metabolism and fatty acid metabolism pathways. By metabolomics analysis, we identified several serum biomarkers that can reliably and accurately predict the efficacy of SLIT in AR patients. The discriminative metabolites and related metabolic pathways contributed to better understand the mechanisms of SLIT in AR patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
夏樱完成签到,获得积分10
1秒前
领导范儿应助张龙雨采纳,获得10
1秒前
1秒前
笨笨梦松完成签到,获得积分10
1秒前
2秒前
星星完成签到,获得积分10
2秒前
钱念波发布了新的文献求助30
3秒前
踏月偷心完成签到,获得积分20
3秒前
pufanlg完成签到,获得积分10
4秒前
科研王子完成签到,获得积分10
5秒前
坦率的枕头完成签到,获得积分10
5秒前
njzhangyanyang完成签到,获得积分10
6秒前
ChiariRay发布了新的文献求助10
7秒前
qhjqljqd发布了新的文献求助10
8秒前
vivi发布了新的文献求助10
9秒前
格子完成签到,获得积分10
9秒前
lxcy0612完成签到,获得积分10
10秒前
yuan完成签到,获得积分10
10秒前
mickiller完成签到,获得积分10
10秒前
宁静致远QY完成签到,获得积分10
10秒前
简单的凡儿完成签到,获得积分10
11秒前
聪慧的石头完成签到,获得积分10
11秒前
ChiariRay完成签到,获得积分10
11秒前
璐璐完成签到 ,获得积分10
12秒前
机智的孤兰完成签到 ,获得积分10
12秒前
绿野仙踪完成签到,获得积分10
12秒前
12秒前
专注的水壶完成签到 ,获得积分10
12秒前
香蕉觅云应助Hydrogen采纳,获得10
13秒前
JamesPei应助ooo采纳,获得10
13秒前
15秒前
喜悦的水云完成签到 ,获得积分10
15秒前
钱念波完成签到,获得积分10
16秒前
逍遥自在完成签到,获得积分10
17秒前
倪小呆完成签到 ,获得积分10
17秒前
19秒前
山神厘子完成签到,获得积分10
19秒前
娇娇大王完成签到,获得积分10
20秒前
Zpear应助qhjqljqd采纳,获得10
21秒前
22秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968578
求助须知:如何正确求助?哪些是违规求助? 3513406
关于积分的说明 11167631
捐赠科研通 3248853
什么是DOI,文献DOI怎么找? 1794499
邀请新用户注册赠送积分活动 875150
科研通“疑难数据库(出版商)”最低求助积分说明 804671