IM-LDP: Incentive Mechanism for Mobile Crowd-Sensing Based on Local Differential Privacy

计算机科学 差别隐私 激励 私人信息检索 计算机安全 信息隐私
作者
Hongyu Huang,Dan Chen,Yantao Li
出处
期刊:IEEE Communications Letters [Institute of Electrical and Electronics Engineers]
卷期号:25 (3): 960-964 被引量:2
标识
DOI:10.1109/lcomm.2020.3042200
摘要

In recent years, the rapid development of embedded technology has given rise to mobile crowd sensing (MCS) systems to outsource sensing tasks to the public crowd equipped with various mobile devices. Sensing data often involves the workers’ privacy, but overprotection of workers’ data leads to the decrease of the data accuracy. Therefore, a crucial issue in such systems is how to balance workers’ data privacy and data aggregation accuracy. The local differential privacy guarantees the data privacy by returning the privacy budget to workers. However, existing works only considered the workers’ reputation as the weight of the aggregation result, but did not correlate with the rewards that workers deserve, which restrained workers’ incentive of participation. Different from these works, by quantifying workers’ reputation, we propose IM-LDP, an incentive mechanism for MCS based on local differential privacy, which includes four mechanisms of incentive, reputation, data perturbation and data aggregation. Specifically, incentive mechanisms are able to select workers who can provide more accurate data and compensate themselves for their privacy costs. The reputation mechanism quantifies the workers’ reputation to improve their payments. The data perturbation mechanism ensures the tradeoff between the data privacy and aggregation accuracy, and the data aggregation mechanism generates highly accurate aggregation results. We evaluate the proposed IM-LDP through theoretical analysis and extensive experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
Alarician完成签到,获得积分10
刚刚
xzz完成签到 ,获得积分10
刚刚
叶世玉完成签到,获得积分10
1秒前
1秒前
金旭发布了新的文献求助10
1秒前
释然发布了新的文献求助10
2秒前
0713发布了新的文献求助10
2秒前
晴天霹雳3732完成签到,获得积分10
2秒前
2秒前
3秒前
Gauss应助xixi采纳,获得30
3秒前
4秒前
无花果应助微糖煎蛋采纳,获得10
4秒前
不学石油完成签到,获得积分10
5秒前
5秒前
5秒前
6秒前
123发布了新的文献求助10
6秒前
laiwei发布了新的文献求助10
6秒前
Hh发布了新的文献求助10
6秒前
Skye发布了新的文献求助10
6秒前
付鹏发布了新的文献求助10
6秒前
张明月发布了新的文献求助10
6秒前
哇塞发布了新的文献求助10
6秒前
夏天完成签到,获得积分20
7秒前
薰硝壤应助金旭采纳,获得150
7秒前
zero完成签到,获得积分10
7秒前
7秒前
cyy1226完成签到,获得积分10
7秒前
吃不饱星球球长应助夕痕采纳,获得20
7秒前
8秒前
夏一发布了新的文献求助10
9秒前
0713完成签到,获得积分20
9秒前
现代山雁完成签到 ,获得积分10
9秒前
ai发布了新的文献求助10
9秒前
香蕉觅云应助quququ采纳,获得10
9秒前
秘密完成签到 ,获得积分10
9秒前
夏天发布了新的文献求助10
11秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156528
求助须知:如何正确求助?哪些是违规求助? 2807966
关于积分的说明 7875565
捐赠科研通 2466256
什么是DOI,文献DOI怎么找? 1312779
科研通“疑难数据库(出版商)”最低求助积分说明 630273
版权声明 601919