亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

IM-LDP: Incentive Mechanism for Mobile Crowd-Sensing Based on Local Differential Privacy

计算机科学 差别隐私 激励 私人信息检索 计算机安全 信息隐私
作者
Hongyu Huang,Dan Chen,Yantao Li
出处
期刊:IEEE Communications Letters [Institute of Electrical and Electronics Engineers]
卷期号:25 (3): 960-964 被引量:2
标识
DOI:10.1109/lcomm.2020.3042200
摘要

In recent years, the rapid development of embedded technology has given rise to mobile crowd sensing (MCS) systems to outsource sensing tasks to the public crowd equipped with various mobile devices. Sensing data often involves the workers’ privacy, but overprotection of workers’ data leads to the decrease of the data accuracy. Therefore, a crucial issue in such systems is how to balance workers’ data privacy and data aggregation accuracy. The local differential privacy guarantees the data privacy by returning the privacy budget to workers. However, existing works only considered the workers’ reputation as the weight of the aggregation result, but did not correlate with the rewards that workers deserve, which restrained workers’ incentive of participation. Different from these works, by quantifying workers’ reputation, we propose IM-LDP, an incentive mechanism for MCS based on local differential privacy, which includes four mechanisms of incentive, reputation, data perturbation and data aggregation. Specifically, incentive mechanisms are able to select workers who can provide more accurate data and compensate themselves for their privacy costs. The reputation mechanism quantifies the workers’ reputation to improve their payments. The data perturbation mechanism ensures the tradeoff between the data privacy and aggregation accuracy, and the data aggregation mechanism generates highly accurate aggregation results. We evaluate the proposed IM-LDP through theoretical analysis and extensive experiments.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
畅快甜瓜发布了新的文献求助10
3秒前
zjh发布了新的文献求助10
13秒前
华仔应助畅快甜瓜采纳,获得10
18秒前
Xixicccccccc发布了新的文献求助10
22秒前
24秒前
24秒前
eeevaxxx完成签到 ,获得积分10
27秒前
zjh完成签到,获得积分10
27秒前
量子星尘发布了新的文献求助10
30秒前
科研通AI6.1应助内向的绿采纳,获得10
34秒前
54秒前
1分钟前
IIII发布了新的文献求助10
1分钟前
1分钟前
李健应助科研通管家采纳,获得10
1分钟前
科研通AI6.1应助Xixicccccccc采纳,获得10
1分钟前
1分钟前
Xixicccccccc发布了新的文献求助10
1分钟前
畅快甜瓜发布了新的文献求助10
1分钟前
2分钟前
Xixicccccccc发布了新的文献求助10
2分钟前
2分钟前
3分钟前
3分钟前
汉堡包应助畅快甜瓜采纳,获得10
3分钟前
SciGPT应助jy采纳,获得10
3分钟前
Jasper应助科研通管家采纳,获得10
3分钟前
bkagyin应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
jy发布了新的文献求助10
3分钟前
疯狂的绿蝶完成签到 ,获得积分10
3分钟前
3分钟前
Xixicccccccc发布了新的文献求助10
3分钟前
jy完成签到,获得积分10
3分钟前
科研通AI6.1应助bear101777采纳,获得10
4分钟前
4分钟前
4分钟前
4分钟前
畅快甜瓜发布了新的文献求助10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5732139
求助须知:如何正确求助?哪些是违规求助? 5336882
关于积分的说明 15322005
捐赠科研通 4877849
什么是DOI,文献DOI怎么找? 2620672
邀请新用户注册赠送积分活动 1569937
关于科研通互助平台的介绍 1526507