River Flood Modeling and Remote Sensing Across Scales: Lessons from Brazil

大洪水 漫滩 洪水(心理学) 环境科学 湿地 沿海洪水 地理 电流(流体) 比例(比率) 水文学(农业) 水文模型 遥感 环境资源管理 气候变化 地图学 气候学 地质学 生态学 海洋学 考古 岩土工程 生物 心理治疗师 海平面上升 心理学
作者
Ayan Santos Fleischmann,João Paulo Lyra Fialho Brêda,Conrado M. Rudorff,Rodrigo Cauduro Dias de Paiva,Walter Collischonn,Fabrice Papa,Mariane Moreira Ravanello
出处
期刊:Elsevier eBooks [Elsevier]
卷期号:: 61-103 被引量:4
标识
DOI:10.1016/b978-0-12-819412-6.00004-3
摘要

In Brazil, a substantial understanding of flooding regimes in large natural wetlands, as in the Amazon and Pantanal regions, has been promoted through remote sensing (RS) and river flood modeling. However, less research attention has been given to the floods with socioeconomic impacts. In the last decades, RS has provided new opportunities for improving flood models from local to global scales, especially in regions with large and sparsely gauged river systems. Here we present some recent lessons from Brazil regarding the use of RS in improving flood models across scales. A systematic literature review of current flood model applications in the country using RS showed that flood extent and satellite altimetry data have been underused, in particular at local scales. Models have been validated with remotely sensed water levels and flood extent mainly for large natural wetlands in the Amazon. Then, some examples of recent advances on the use of RS data for improving models are presented. Innovative methods include estimation of river cross-section parameters with data assimilation and genetic calibration algorithms, and floodplain topography estimation based on detailed in situ survey as well as on a combination of water mask and water level time series. Cross-scale comparisons between global, regional, and local flood models in Brazilian rivers also provide valuable insights on the capabilities of current models, showing, for example, that more distributed information of cross-sections are needed to achieve better predictions. We finish by summarizing some current efforts by national and international organizations to estimate flood hazard as well as to monitor and forecast floods in real-time, and discussing perspectives on how current and future satellite missions, in combination with models, could help to mitigate flood related disasters in Brazil.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
木梓完成签到,获得积分10
刚刚
Edison发布了新的文献求助10
刚刚
刚刚
skr完成签到,获得积分10
1秒前
科研通AI6应助愉快的烤鸡采纳,获得10
1秒前
酒香曼陀罗完成签到 ,获得积分10
1秒前
大马哈鱼发布了新的文献求助10
2秒前
orixero应助啊萍采纳,获得10
2秒前
2秒前
wdasdas发布了新的文献求助10
2秒前
李佳发布了新的文献求助10
2秒前
3秒前
Still完成签到,获得积分10
3秒前
3秒前
逃跑的想表白的你猜完成签到,获得积分10
5秒前
大个应助Chris采纳,获得10
6秒前
吃吃吃不敢吃完成签到 ,获得积分10
6秒前
tang发布了新的文献求助10
7秒前
7秒前
恐龙猪大王完成签到,获得积分10
8秒前
满意曼荷完成签到,获得积分10
8秒前
8秒前
小贾发布了新的文献求助10
8秒前
9秒前
ll发布了新的文献求助30
9秒前
vadfdfb完成签到,获得积分10
9秒前
geg发布了新的文献求助30
9秒前
Akim应助失眠的血茗采纳,获得10
9秒前
10秒前
hehe完成签到,获得积分10
11秒前
11秒前
11秒前
wanci应助Jared采纳,获得10
12秒前
Pomelo发布了新的文献求助10
12秒前
13秒前
Anne发布了新的文献求助30
13秒前
Jason发布了新的文献求助10
13秒前
14秒前
夏d发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5546153
求助须知:如何正确求助?哪些是违规求助? 4631960
关于积分的说明 14624094
捐赠科研通 4573677
什么是DOI,文献DOI怎么找? 2507699
邀请新用户注册赠送积分活动 1484361
关于科研通互助平台的介绍 1455656