River Flood Modeling and Remote Sensing Across Scales: Lessons from Brazil

大洪水 漫滩 洪水(心理学) 环境科学 湿地 沿海洪水 地理 电流(流体) 比例(比率) 水文学(农业) 水文模型 遥感 环境资源管理 气候变化 地图学 气候学 地质学 生态学 海洋学 考古 岩土工程 生物 心理治疗师 海平面上升 心理学
作者
Ayan Santos Fleischmann,João Paulo Lyra Fialho Brêda,Conrado M. Rudorff,Rodrigo Cauduro Dias de Paiva,Walter Collischonn,Fabrice Papa,Mariane Moreira Ravanello
出处
期刊:Elsevier eBooks [Elsevier]
卷期号:: 61-103 被引量:4
标识
DOI:10.1016/b978-0-12-819412-6.00004-3
摘要

In Brazil, a substantial understanding of flooding regimes in large natural wetlands, as in the Amazon and Pantanal regions, has been promoted through remote sensing (RS) and river flood modeling. However, less research attention has been given to the floods with socioeconomic impacts. In the last decades, RS has provided new opportunities for improving flood models from local to global scales, especially in regions with large and sparsely gauged river systems. Here we present some recent lessons from Brazil regarding the use of RS in improving flood models across scales. A systematic literature review of current flood model applications in the country using RS showed that flood extent and satellite altimetry data have been underused, in particular at local scales. Models have been validated with remotely sensed water levels and flood extent mainly for large natural wetlands in the Amazon. Then, some examples of recent advances on the use of RS data for improving models are presented. Innovative methods include estimation of river cross-section parameters with data assimilation and genetic calibration algorithms, and floodplain topography estimation based on detailed in situ survey as well as on a combination of water mask and water level time series. Cross-scale comparisons between global, regional, and local flood models in Brazilian rivers also provide valuable insights on the capabilities of current models, showing, for example, that more distributed information of cross-sections are needed to achieve better predictions. We finish by summarizing some current efforts by national and international organizations to estimate flood hazard as well as to monitor and forecast floods in real-time, and discussing perspectives on how current and future satellite missions, in combination with models, could help to mitigate flood related disasters in Brazil.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mumufan完成签到,获得积分10
1秒前
哇哦完成签到,获得积分10
1秒前
太平村完成签到,获得积分10
1秒前
善良的过客完成签到,获得积分10
1秒前
CipherSage应助笑点低的不采纳,获得10
1秒前
朱之欣发布了新的文献求助50
2秒前
文艺香菱完成签到,获得积分10
2秒前
summer完成签到,获得积分10
2秒前
2秒前
震震发布了新的文献求助10
2秒前
2秒前
小二郎应助eternity136采纳,获得10
3秒前
李爱国应助Jenaloe采纳,获得10
3秒前
谨慎觅露发布了新的文献求助20
3秒前
偷乐发布了新的文献求助10
4秒前
咸鱼好闲完成签到 ,获得积分10
5秒前
宋宋完成签到,获得积分10
5秒前
5秒前
小马甲应助JoshuaChen采纳,获得10
5秒前
5秒前
彭于彦祖应助ggb采纳,获得150
5秒前
青芒果发布了新的文献求助10
5秒前
长夜变清早完成签到,获得积分10
6秒前
研友_VZG7GZ应助寒hep采纳,获得10
6秒前
星辰大海应助一袋薯片采纳,获得10
7秒前
7秒前
赘婿应助现代代双采纳,获得10
7秒前
Ava应助lw采纳,获得10
8秒前
kirren完成签到,获得积分10
8秒前
LEI完成签到 ,获得积分20
8秒前
酷波er应助T拐拐采纳,获得10
9秒前
liangerla完成签到,获得积分10
9秒前
9秒前
多喝开开完成签到,获得积分10
9秒前
林黛玉倒拔垂杨柳完成签到 ,获得积分10
10秒前
李健的粉丝团团长应助lixm采纳,获得10
11秒前
11秒前
NexusExplorer应助呱呱采纳,获得10
11秒前
量子星尘发布了新的文献求助10
12秒前
张瑜发布了新的文献求助10
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986722
求助须知:如何正确求助?哪些是违规求助? 3529207
关于积分的说明 11243810
捐赠科研通 3267638
什么是DOI,文献DOI怎么找? 1803822
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582