River Flood Modeling and Remote Sensing Across Scales: Lessons from Brazil

大洪水 漫滩 洪水(心理学) 环境科学 湿地 沿海洪水 地理 电流(流体) 比例(比率) 水文学(农业) 水文模型 遥感 环境资源管理 气候变化 地图学 气候学 地质学 生态学 海洋学 考古 岩土工程 生物 心理治疗师 海平面上升 心理学
作者
Ayan Santos Fleischmann,João Paulo Lyra Fialho Brêda,Conrado M. Rudorff,Rodrigo Cauduro Dias de Paiva,Walter Collischonn,Fabrice Papa,Mariane Moreira Ravanello
出处
期刊:Elsevier eBooks [Elsevier]
卷期号:: 61-103 被引量:4
标识
DOI:10.1016/b978-0-12-819412-6.00004-3
摘要

In Brazil, a substantial understanding of flooding regimes in large natural wetlands, as in the Amazon and Pantanal regions, has been promoted through remote sensing (RS) and river flood modeling. However, less research attention has been given to the floods with socioeconomic impacts. In the last decades, RS has provided new opportunities for improving flood models from local to global scales, especially in regions with large and sparsely gauged river systems. Here we present some recent lessons from Brazil regarding the use of RS in improving flood models across scales. A systematic literature review of current flood model applications in the country using RS showed that flood extent and satellite altimetry data have been underused, in particular at local scales. Models have been validated with remotely sensed water levels and flood extent mainly for large natural wetlands in the Amazon. Then, some examples of recent advances on the use of RS data for improving models are presented. Innovative methods include estimation of river cross-section parameters with data assimilation and genetic calibration algorithms, and floodplain topography estimation based on detailed in situ survey as well as on a combination of water mask and water level time series. Cross-scale comparisons between global, regional, and local flood models in Brazilian rivers also provide valuable insights on the capabilities of current models, showing, for example, that more distributed information of cross-sections are needed to achieve better predictions. We finish by summarizing some current efforts by national and international organizations to estimate flood hazard as well as to monitor and forecast floods in real-time, and discussing perspectives on how current and future satellite missions, in combination with models, could help to mitigate flood related disasters in Brazil.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
pluto应助嘿哈采纳,获得10
1秒前
可爱的函函应助穆思柔采纳,获得10
1秒前
高贵的荧发布了新的文献求助10
2秒前
2秒前
MOF@COF完成签到,获得积分10
2秒前
cloud发布了新的文献求助30
2秒前
咯咯发布了新的文献求助10
2秒前
虚幻阿尔山完成签到,获得积分10
4秒前
grisco发布了新的文献求助10
4秒前
科研顺利发布了新的文献求助10
4秒前
Olivia发布了新的文献求助30
5秒前
科目三应助安平采纳,获得10
5秒前
啦啦啦完成签到,获得积分20
6秒前
6秒前
6秒前
Lucas应助勤恳马里奥采纳,获得30
6秒前
田様应助初空月儿采纳,获得10
6秒前
7秒前
7秒前
7秒前
未雨绸缪完成签到,获得积分10
8秒前
zzz完成签到,获得积分10
8秒前
9秒前
善学以致用应助斯文墨镜采纳,获得10
9秒前
hlq发布了新的文献求助10
10秒前
小小怪将军完成签到,获得积分10
11秒前
12秒前
传奇3应助岁月浪翻了采纳,获得10
13秒前
13秒前
13秒前
董鹏发布了新的文献求助40
13秒前
13秒前
元锦程发布了新的文献求助10
13秒前
ding应助金木研采纳,获得10
13秒前
14秒前
魏佳阁应助未雨绸缪采纳,获得10
15秒前
15秒前
15秒前
lllxxxx完成签到,获得积分10
16秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3152731
求助须知:如何正确求助?哪些是违规求助? 2803968
关于积分的说明 7856424
捐赠科研通 2461663
什么是DOI,文献DOI怎么找? 1310474
科研通“疑难数据库(出版商)”最低求助积分说明 629233
版权声明 601782