River Flood Modeling and Remote Sensing Across Scales: Lessons from Brazil

大洪水 漫滩 洪水(心理学) 环境科学 湿地 沿海洪水 地理 电流(流体) 比例(比率) 水文学(农业) 水文模型 遥感 环境资源管理 气候变化 地图学 气候学 地质学 生态学 海洋学 考古 岩土工程 生物 心理治疗师 海平面上升 心理学
作者
Ayan Santos Fleischmann,João Paulo Lyra Fialho Brêda,Conrado M. Rudorff,Rodrigo Cauduro Dias de Paiva,Walter Collischonn,Fabrice Papa,Mariane Moreira Ravanello
出处
期刊:Elsevier eBooks [Elsevier]
卷期号:: 61-103 被引量:4
标识
DOI:10.1016/b978-0-12-819412-6.00004-3
摘要

In Brazil, a substantial understanding of flooding regimes in large natural wetlands, as in the Amazon and Pantanal regions, has been promoted through remote sensing (RS) and river flood modeling. However, less research attention has been given to the floods with socioeconomic impacts. In the last decades, RS has provided new opportunities for improving flood models from local to global scales, especially in regions with large and sparsely gauged river systems. Here we present some recent lessons from Brazil regarding the use of RS in improving flood models across scales. A systematic literature review of current flood model applications in the country using RS showed that flood extent and satellite altimetry data have been underused, in particular at local scales. Models have been validated with remotely sensed water levels and flood extent mainly for large natural wetlands in the Amazon. Then, some examples of recent advances on the use of RS data for improving models are presented. Innovative methods include estimation of river cross-section parameters with data assimilation and genetic calibration algorithms, and floodplain topography estimation based on detailed in situ survey as well as on a combination of water mask and water level time series. Cross-scale comparisons between global, regional, and local flood models in Brazilian rivers also provide valuable insights on the capabilities of current models, showing, for example, that more distributed information of cross-sections are needed to achieve better predictions. We finish by summarizing some current efforts by national and international organizations to estimate flood hazard as well as to monitor and forecast floods in real-time, and discussing perspectives on how current and future satellite missions, in combination with models, could help to mitigate flood related disasters in Brazil.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
natural发布了新的文献求助10
刚刚
yiyi完成签到,获得积分10
刚刚
珂儿完成签到,获得积分10
1秒前
楼少博完成签到,获得积分20
1秒前
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
2秒前
虚心如蓉关注了科研通微信公众号
2秒前
Criminology34应助wz采纳,获得10
3秒前
3秒前
研友_VZG7GZ应助美丽的海云采纳,获得10
4秒前
儒雅白山发布了新的文献求助10
4秒前
枫asaki发布了新的文献求助10
4秒前
111发布了新的文献求助10
4秒前
4秒前
高大代容发布了新的文献求助10
4秒前
龍Ryu发布了新的文献求助10
5秒前
柯达发布了新的文献求助10
5秒前
5秒前
小鸭子完成签到,获得积分0
5秒前
土豪的易文完成签到,获得积分10
6秒前
尉迟希望应助哈哈采纳,获得10
6秒前
wjx完成签到,获得积分10
6秒前
Jungel完成签到,获得积分0
6秒前
sandy完成签到,获得积分10
6秒前
PCR达人完成签到,获得积分10
7秒前
顺利鱼发布了新的文献求助10
7秒前
天天学习发布了新的文献求助10
7秒前
7秒前
共享精神应助ALEXK采纳,获得10
9秒前
9秒前
哀伤发布了新的文献求助10
9秒前
英俊的铭应助liyiliyi117采纳,获得10
10秒前
29完成签到,获得积分10
10秒前
11秒前
11秒前
zhangshenrong完成签到 ,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5710497
求助须知:如何正确求助?哪些是违规求助? 5199402
关于积分的说明 15260984
捐赠科研通 4863101
什么是DOI,文献DOI怎么找? 2610419
邀请新用户注册赠送积分活动 1560773
关于科研通互助平台的介绍 1518409