Single image dehazing with an independent Detail-Recovery Network

计算机科学 图像(数学) 卷积(计算机科学) 人工智能 计算机视觉 编码(集合论) 人工神经网络 集合(抽象数据类型) 程序设计语言
作者
Yan Li,De Cheng,Jiande Sun,Dingwen Zhang,Nannan Wang,Xinbo Gao
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:254: 109579-109579 被引量:10
标识
DOI:10.1016/j.knosys.2022.109579
摘要

Single image dehazing is a prerequisite that affects the performance of many visually related tasks and has attracted increasing attention in recent years. However, most existing dehazing methods place more emphasis on haze removal but less on the detail recovery of the dehazed images. In this paper, we propose a single image dehazing method with an independent Detail Recovery Network (DRN), which considers capturing the details from the input image over a separate network and then integrating them into a coarse dehazed image. The overall network consists of two independent networks, named DRN and the dehazing network. Specifically, the DRN aims to recover the dehazed image details through the joint efforts of the local branch and the global branch. The local branch can obtain local detail information through the convolution layer, and the global branch can capture multi-scale global information by Smooth Dilated Convolution (SDC). In addition, we apply multi-faceted loss to improve the stability of the dehazing model. Extensive experiments on public image dehazing datasets illustrate the effectiveness of the modules in the proposed method and reveal that our method outperforms state-of-the-art dehazing methods. The code is released in https://github.com/YanLi-LY/Dehazing-DRN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
橘子完成签到,获得积分10
2秒前
可耐的从安完成签到 ,获得积分10
3秒前
zho应助背后的诺言采纳,获得10
3秒前
粥粥完成签到,获得积分10
3秒前
4秒前
打打应助陈杰采纳,获得10
5秒前
充电宝应助柔弱凡松采纳,获得10
6秒前
Jasmine发布了新的文献求助10
7秒前
8秒前
8秒前
大气的秋完成签到,获得积分10
9秒前
桐桐应助BB采纳,获得10
9秒前
9秒前
9秒前
曙光完成签到,获得积分10
10秒前
10秒前
大方嵩发布了新的文献求助10
11秒前
陌路发布了新的文献求助20
11秒前
Muqi完成签到,获得积分10
11秒前
12秒前
marinemiao发布了新的文献求助10
13秒前
13秒前
丘比特应助wzxxxx采纳,获得10
14秒前
科研通AI5应助飘逸蘑菇采纳,获得10
14秒前
科研通AI2S应助cc采纳,获得10
15秒前
15秒前
15秒前
spray完成签到,获得积分10
16秒前
范范完成签到,获得积分20
16秒前
少年发布了新的文献求助10
16秒前
大力鱼发布了新的文献求助10
16秒前
17秒前
18秒前
18秒前
shilong.yang完成签到,获得积分10
18秒前
jy发布了新的文献求助10
19秒前
20秒前
20秒前
梦里发布了新的文献求助10
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794