Single image dehazing with an independent Detail-Recovery Network

计算机科学 图像(数学) 卷积(计算机科学) 人工智能 计算机视觉 编码(集合论) 人工神经网络 集合(抽象数据类型) 程序设计语言
作者
Yan Li,De Cheng,Dingwen Zhang,Nannan Wang,Xinbo Gao,Jiande Sun
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:254: 109579-109579 被引量:24
标识
DOI:10.1016/j.knosys.2022.109579
摘要

Single image dehazing is a prerequisite that affects the performance of many visually related tasks and has attracted increasing attention in recent years. However, most existing dehazing methods place more emphasis on haze removal but less on the detail recovery of the dehazed images. In this paper, we propose a single image dehazing method with an independent Detail Recovery Network (DRN), which considers capturing the details from the input image over a separate network and then integrating them into a coarse dehazed image. The overall network consists of two independent networks, named DRN and the dehazing network. Specifically, the DRN aims to recover the dehazed image details through the joint efforts of the local branch and the global branch. The local branch can obtain local detail information through the convolution layer, and the global branch can capture multi-scale global information by Smooth Dilated Convolution (SDC). In addition, we apply multi-faceted loss to improve the stability of the dehazing model. Extensive experiments on public image dehazing datasets illustrate the effectiveness of the modules in the proposed method and reveal that our method outperforms state-of-the-art dehazing methods. The code is released in https://github.com/YanLi-LY/Dehazing-DRN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
啵噜噜噜啊完成签到,获得积分10
2秒前
OYY完成签到 ,获得积分10
2秒前
烂漫的断秋完成签到 ,获得积分10
3秒前
4秒前
4秒前
Lucas应助Livrik采纳,获得10
5秒前
cyn0762完成签到,获得积分10
5秒前
点到为止完成签到,获得积分10
6秒前
7秒前
Akim应助lll采纳,获得10
8秒前
高贵灵槐完成签到 ,获得积分10
9秒前
12秒前
wxh完成签到 ,获得积分20
12秒前
量子星尘发布了新的文献求助10
12秒前
liuzi发布了新的文献求助20
13秒前
雨过天晴完成签到,获得积分10
14秒前
花花完成签到 ,获得积分10
15秒前
16秒前
18秒前
汪汪发布了新的文献求助10
21秒前
21秒前
22秒前
25秒前
追寻筮关注了科研通微信公众号
25秒前
miaojuly发布了新的文献求助10
26秒前
充电宝应助汪汪采纳,获得10
27秒前
28秒前
涵哈哈哈哈哈完成签到 ,获得积分10
30秒前
32秒前
liuzi完成签到,获得积分10
32秒前
科目三应助油菜的星星采纳,获得10
34秒前
34秒前
34秒前
35秒前
35秒前
木心应助高院士采纳,获得60
36秒前
36秒前
36秒前
37秒前
搜集达人应助卢敏明采纳,获得10
37秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988868
求助须知:如何正确求助?哪些是违规求助? 3531255
关于积分的说明 11253071
捐赠科研通 3269858
什么是DOI,文献DOI怎么找? 1804822
邀请新用户注册赠送积分活动 881994
科研通“疑难数据库(出版商)”最低求助积分说明 809035