Relation-Aware Shared Representation Learning for Cancer Prognosis Analysis With Auxiliary Clinical Variables and Incomplete Multi-Modality Data

过度拟合 计算机科学 判别式 特征(语言学) 模式 人工智能 关系(数据库) 特征学习 机器学习 模态(人机交互) 数据挖掘 代表(政治) 人工神经网络 政治 政治学 哲学 社会学 法学 语言学 社会科学
作者
Zhenyuan Ning,Denghui Du,Chao Tu,Qianjin Feng,Yu Zhang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:41 (1): 186-198 被引量:15
标识
DOI:10.1109/tmi.2021.3108802
摘要

The integrative analysis of complementary phenotype information contained in multi-modality data (e.g., histopathological images and genomic data) has advanced the prognostic evaluation of cancers. However, multi-modality based prognosis analysis confronts two challenges: (1) how to explore underlying relations inherent in different modalities data for learning compact and discriminative multi-modality representations; (2) how to take full consideration of incomplete multi-modality data for constructing accurate and robust prognostic model, since a host of complete multi-modality data are not always available. Additionally, many existing multi-modality based prognostic methods commonly ignore relevant clinical variables (e.g., grade and stage), which, however, may provide supplemental information to promote the performance of model. In this paper, we propose a relation-aware shared representation learning method for prognosis analysis of cancers, which makes full use of clinical information and incomplete multi-modality data. The proposed method learns multi-modal shared space tailored for prognostic model via a dual mapping. Within the shared space, it equips with relational regularizers to explore the potential relations (i.e., feature-label and feature-feature relations) among multi-modality data for inducing discriminatory representations and simultaneously obtaining extra sparsity for alleviating overfitting. Moreover, it regresses and incorporates multiple auxiliary clinical attributes with dynamic coefficients to meliorate performance. Furthermore, in training stage, a partial mapping strategy is employed to extend and train a more reliable model with incomplete multi-modality data. We have evaluated our method on three public datasets derived from The Cancer Genome Atlas (TCGA) project, and the experimental results demonstrate the superior performance of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
十年完成签到,获得积分10
2秒前
3秒前
脑洞疼应助执着的笑南采纳,获得10
4秒前
wangli发布了新的文献求助10
5秒前
fff关闭了fff文献求助
6秒前
传奇3应助Deanna采纳,获得10
7秒前
赘婿应助爱吃汉堡的yyq采纳,获得10
9秒前
9秒前
ZM发布了新的文献求助30
9秒前
吴路完成签到,获得积分10
9秒前
星辰完成签到,获得积分10
10秒前
神内小天使完成签到,获得积分10
10秒前
小二郎应助wangli采纳,获得10
13秒前
喜悦兔子完成签到 ,获得积分0
13秒前
lsq关闭了lsq文献求助
14秒前
zhangyidian应助求知的学者采纳,获得30
15秒前
冰魂应助我请问呢采纳,获得200
15秒前
yunwen完成签到,获得积分20
15秒前
16秒前
18秒前
fff发布了新的文献求助10
18秒前
Yzz发布了新的文献求助10
20秒前
ZM完成签到,获得积分10
20秒前
hy发布了新的文献求助10
21秒前
饱满一刀完成签到,获得积分10
22秒前
23秒前
忧郁小蘑菇完成签到,获得积分10
24秒前
luckyhappy发布了新的文献求助10
26秒前
27秒前
幸福发布了新的文献求助10
27秒前
斯文败类应助执着南琴采纳,获得10
27秒前
28秒前
彭于晏应助dong采纳,获得30
28秒前
29秒前
29秒前
文献文献完成签到 ,获得积分10
30秒前
思源应助海东南采纳,获得10
30秒前
Hey发布了新的文献求助20
31秒前
烂漫成仁发布了新的文献求助10
33秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
T/CAB 0344-2024 重组人源化胶原蛋白内毒素去除方法 1000
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3775612
求助须知:如何正确求助?哪些是违规求助? 3321229
关于积分的说明 10204285
捐赠科研通 3036074
什么是DOI,文献DOI怎么找? 1665997
邀请新用户注册赠送积分活动 797213
科研通“疑难数据库(出版商)”最低求助积分说明 757766