Machine Learning Prediction of TiO2-Coating Wettability Tuned via UV Exposure

超亲水性 润湿 接触角 材料科学 涂层 光催化 化学工程 生物系统 复合材料 有机化学 催化作用 化学 工程类 生物
作者
Mohamad Jafari Gukeh,Shashwata Moitra,Ali Noaman Ibrahim,Sybil Derrible,Constantine M. Megaridis
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:13 (38): 46171-46179 被引量:24
标识
DOI:10.1021/acsami.1c13262
摘要

Surfaces with extreme wettability (too low, superhydrophobic; too high, superhydrophilic) have attracted considerable attention over the past two decades. Titanium dioxide (TiO2) has been one of the most popular components for generating superhydrophobic/hydrophilic coatings. Combining TiO2 with ethanol and a commercial fluoroacrylic copolymer dispersion, known as PMC, can produce coatings with water contact angles approaching 170°. Another property of interest for this specific TiO2 formulation is its photocatalytic behavior, which causes the contact angle of water to be gradually reduced with rising timed exposure to UV light. While this formulation has been employed in many studies, there exists no quantitative guidance to determine or tune the contact angle (and thus wettability) with the composition of the coating and UV exposure time. In this article, machine learning models are employed to predict the required UV exposure time for any specified TiO2/PMC coating composition to attain a certain wettability (UV-reduced contact angle). For that purpose, eight different coating compositions were applied to glass slides and exposed to UV light for different time intervals. The collected contact-angle data was supplied to different regression models to designate the best method to predict the required UV exposure time for a prespecified wettability. Two types of machine learning models were used: (1) parametric and (2) nonparametric. The results showed a nonlinear behavior between the coating formulation and its contact angle attained after timed UV exposure. Nonparametric methods showed high accuracy and stability with general regression neural network (GRNN) performing best with an accuracy of 0.971, 0.977, and 0.933 on the test, train, and unseen data set, respectively. The present study not only provides quantitative guidance for producing coatings of specified wettability, but also presents a generalized methodology that could be employed for other functional coatings in technological applications requiring precise fluid/surface interactions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
齐朕完成签到,获得积分10
1秒前
熠ttw发布了新的文献求助10
2秒前
芝士完成签到 ,获得积分10
2秒前
降臣完成签到,获得积分10
5秒前
7秒前
风之圣痕完成签到,获得积分10
7秒前
乐正熠彤完成签到,获得积分10
9秒前
X欣完成签到,获得积分10
9秒前
qian发布了新的文献求助10
12秒前
搜集达人应助大方荟采纳,获得10
13秒前
15秒前
na完成签到,获得积分10
16秒前
17秒前
18秒前
于清绝完成签到 ,获得积分10
18秒前
完美世界应助qian采纳,获得10
18秒前
司徒诗蕾完成签到 ,获得积分10
20秒前
21秒前
23秒前
HeNeArKrXeRn发布了新的文献求助10
24秒前
王青青完成签到,获得积分10
24秒前
qian完成签到,获得积分20
26秒前
violetlishu完成签到 ,获得积分10
26秒前
美好颜发布了新的文献求助10
27秒前
子车雁开发布了新的文献求助10
27秒前
29秒前
DezhaoWang完成签到,获得积分10
29秒前
33秒前
大方荟发布了新的文献求助10
33秒前
nater2ver完成签到,获得积分10
33秒前
子车雁开完成签到,获得积分10
34秒前
嘉星糖完成签到,获得积分10
34秒前
hrzmlily完成签到,获得积分10
35秒前
wanci应助偷看星星采纳,获得10
37秒前
38秒前
nater3ver完成签到,获得积分10
48秒前
cxlhzq完成签到,获得积分10
51秒前
53秒前
mengwensi完成签到,获得积分10
53秒前
情怀应助科研通管家采纳,获得10
53秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965786
求助须知:如何正确求助?哪些是违规求助? 3511056
关于积分的说明 11156089
捐赠科研通 3245497
什么是DOI,文献DOI怎么找? 1793093
邀请新用户注册赠送积分活动 874230
科研通“疑难数据库(出版商)”最低求助积分说明 804268