清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Machine Learning Prediction of TiO2-Coating Wettability Tuned via UV Exposure

超亲水性 润湿 接触角 材料科学 涂层 光催化 化学工程 生物系统 复合材料 有机化学 催化作用 生物 工程类 化学
作者
Mohamad Jafari Gukeh,Shashwata Moitra,Ali Noaman Ibrahim,Sybil Derrible,Constantine M. Megaridis
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:13 (38): 46171-46179 被引量:29
标识
DOI:10.1021/acsami.1c13262
摘要

Surfaces with extreme wettability (too low, superhydrophobic; too high, superhydrophilic) have attracted considerable attention over the past two decades. Titanium dioxide (TiO2) has been one of the most popular components for generating superhydrophobic/hydrophilic coatings. Combining TiO2 with ethanol and a commercial fluoroacrylic copolymer dispersion, known as PMC, can produce coatings with water contact angles approaching 170°. Another property of interest for this specific TiO2 formulation is its photocatalytic behavior, which causes the contact angle of water to be gradually reduced with rising timed exposure to UV light. While this formulation has been employed in many studies, there exists no quantitative guidance to determine or tune the contact angle (and thus wettability) with the composition of the coating and UV exposure time. In this article, machine learning models are employed to predict the required UV exposure time for any specified TiO2/PMC coating composition to attain a certain wettability (UV-reduced contact angle). For that purpose, eight different coating compositions were applied to glass slides and exposed to UV light for different time intervals. The collected contact-angle data was supplied to different regression models to designate the best method to predict the required UV exposure time for a prespecified wettability. Two types of machine learning models were used: (1) parametric and (2) nonparametric. The results showed a nonlinear behavior between the coating formulation and its contact angle attained after timed UV exposure. Nonparametric methods showed high accuracy and stability with general regression neural network (GRNN) performing best with an accuracy of 0.971, 0.977, and 0.933 on the test, train, and unseen data set, respectively. The present study not only provides quantitative guidance for producing coatings of specified wettability, but also presents a generalized methodology that could be employed for other functional coatings in technological applications requiring precise fluid/surface interactions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
秋夜临完成签到,获得积分0
6秒前
11秒前
Liumingyu发布了新的文献求助10
16秒前
千帆破浪完成签到 ,获得积分10
23秒前
shhoing应助羞涩的妙菱采纳,获得10
27秒前
32秒前
WGX完成签到 ,获得积分10
38秒前
master-f完成签到 ,获得积分10
40秒前
羞涩的妙菱完成签到,获得积分10
50秒前
1分钟前
端庄半凡完成签到 ,获得积分10
1分钟前
小丁发布了新的文献求助50
1分钟前
yang923完成签到 ,获得积分10
1分钟前
shhoing应助羞涩的妙菱采纳,获得10
1分钟前
Anlocia完成签到 ,获得积分10
1分钟前
1分钟前
ldy完成签到 ,获得积分10
1分钟前
woxinyouyou完成签到,获得积分0
1分钟前
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
发个15分的完成签到 ,获得积分10
1分钟前
cxy完成签到 ,获得积分10
2分钟前
JamesPei应助Liumingyu采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
Liumingyu发布了新的文献求助10
3分钟前
老石完成签到 ,获得积分10
3分钟前
NexusExplorer应助枯藤老柳树采纳,获得10
3分钟前
田様应助神秘猎牛人采纳,获得10
3分钟前
shhoing应助科研通管家采纳,获得10
3分钟前
英俊的铭应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
Jerry发布了新的文献求助10
3分钟前
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5539063
求助须知:如何正确求助?哪些是违规求助? 4625935
关于积分的说明 14597077
捐赠科研通 4566709
什么是DOI,文献DOI怎么找? 2503520
邀请新用户注册赠送积分活动 1481524
关于科研通互助平台的介绍 1452982