Machine Learning Prediction of TiO2-Coating Wettability Tuned via UV Exposure.

化学工程 表面改性 复合材料 薄膜 基质(水族馆) 锐钛矿 纳米技术 浸涂
作者
Mohamad Jafari Gukeh,Shashwata Moitra,Ali Ibrahim,Sybil Derrible,Constantine M. Megaridis
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:13 (38): 46171-46179 被引量:1
标识
DOI:10.1021/acsami.1c13262
摘要

Surfaces with extreme wettability (too low, superhydrophobic; too high, superhydrophilic) have attracted considerable attention over the past two decades. Titanium dioxide (TiO2) has been one of the most popular components for generating superhydrophobic/hydrophilic coatings. Combining TiO2 with ethanol and a commercial fluoroacrylic copolymer dispersion, known as PMC, can produce coatings with water contact angles approaching 170°. Another property of interest for this specific TiO2 formulation is its photocatalytic behavior, which causes the contact angle of water to be gradually reduced with rising timed exposure to UV light. While this formulation has been employed in many studies, there exists no quantitative guidance to determine or tune the contact angle (and thus wettability) with the composition of the coating and UV exposure time. In this article, machine learning models are employed to predict the required UV exposure time for any specified TiO2/PMC coating composition to attain a certain wettability (UV-reduced contact angle). For that purpose, eight different coating compositions were applied to glass slides and exposed to UV light for different time intervals. The collected contact-angle data was supplied to different regression models to designate the best method to predict the required UV exposure time for a prespecified wettability. Two types of machine learning models were used: (1) parametric and (2) nonparametric. The results showed a nonlinear behavior between the coating formulation and its contact angle attained after timed UV exposure. Nonparametric methods showed high accuracy and stability with general regression neural network (GRNN) performing best with an accuracy of 0.971, 0.977, and 0.933 on the test, train, and unseen data set, respectively. The present study not only provides quantitative guidance for producing coatings of specified wettability, but also presents a generalized methodology that could be employed for other functional coatings in technological applications requiring precise fluid/surface interactions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
桐桐应助susu采纳,获得10
1秒前
秋秋完成签到,获得积分10
2秒前
二条发布了新的文献求助10
3秒前
3秒前
是啊豪ya完成签到,获得积分10
3秒前
Hana完成签到,获得积分10
4秒前
方方公主发布了新的文献求助10
5秒前
5秒前
居居应助sukasuka采纳,获得10
6秒前
乐乐应助可可西里采纳,获得10
6秒前
lql完成签到 ,获得积分10
6秒前
隐形曼青应助Hayat采纳,获得20
6秒前
打打应助想想zzz采纳,获得10
7秒前
活泼的路人完成签到 ,获得积分10
7秒前
7秒前
JamesPei应助跳跃醉蝶采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
天天快乐应助科研通管家采纳,获得10
8秒前
研友_VZG7GZ应助科研通管家采纳,获得10
8秒前
烟花应助科研通管家采纳,获得10
8秒前
情怀应助科研通管家采纳,获得10
8秒前
汉堡包应助科研通管家采纳,获得30
8秒前
从容芮应助科研通管家采纳,获得30
8秒前
8秒前
Zjin宇发布了新的文献求助10
8秒前
从容芮应助科研通管家采纳,获得30
8秒前
领导范儿应助科研通管家采纳,获得10
8秒前
从容芮应助科研通管家采纳,获得30
8秒前
天天快乐应助科研通管家采纳,获得30
9秒前
9秒前
9秒前
9秒前
9秒前
情怀应助科研通管家采纳,获得10
9秒前
天天快乐应助科研通管家采纳,获得10
9秒前
望着拥有完成签到,获得积分10
9秒前
miki完成签到,获得积分10
9秒前
与点完成签到,获得积分10
9秒前
10秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158017
求助须知:如何正确求助?哪些是违规求助? 2809393
关于积分的说明 7881798
捐赠科研通 2467878
什么是DOI,文献DOI怎么找? 1313757
科研通“疑难数据库(出版商)”最低求助积分说明 630522
版权声明 601943