Machine Learning Prediction of TiO2-Coating Wettability Tuned via UV Exposure

超亲水性 润湿 接触角 材料科学 涂层 光催化 化学工程 生物系统 复合材料 有机化学 催化作用 生物 工程类 化学
作者
Mohamad Jafari Gukeh,Shashwata Moitra,Ali Noaman Ibrahim,Sybil Derrible,Constantine M. Megaridis
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:13 (38): 46171-46179 被引量:32
标识
DOI:10.1021/acsami.1c13262
摘要

Surfaces with extreme wettability (too low, superhydrophobic; too high, superhydrophilic) have attracted considerable attention over the past two decades. Titanium dioxide (TiO2) has been one of the most popular components for generating superhydrophobic/hydrophilic coatings. Combining TiO2 with ethanol and a commercial fluoroacrylic copolymer dispersion, known as PMC, can produce coatings with water contact angles approaching 170°. Another property of interest for this specific TiO2 formulation is its photocatalytic behavior, which causes the contact angle of water to be gradually reduced with rising timed exposure to UV light. While this formulation has been employed in many studies, there exists no quantitative guidance to determine or tune the contact angle (and thus wettability) with the composition of the coating and UV exposure time. In this article, machine learning models are employed to predict the required UV exposure time for any specified TiO2/PMC coating composition to attain a certain wettability (UV-reduced contact angle). For that purpose, eight different coating compositions were applied to glass slides and exposed to UV light for different time intervals. The collected contact-angle data was supplied to different regression models to designate the best method to predict the required UV exposure time for a prespecified wettability. Two types of machine learning models were used: (1) parametric and (2) nonparametric. The results showed a nonlinear behavior between the coating formulation and its contact angle attained after timed UV exposure. Nonparametric methods showed high accuracy and stability with general regression neural network (GRNN) performing best with an accuracy of 0.971, 0.977, and 0.933 on the test, train, and unseen data set, respectively. The present study not only provides quantitative guidance for producing coatings of specified wettability, but also presents a generalized methodology that could be employed for other functional coatings in technological applications requiring precise fluid/surface interactions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Jiayou Zhang完成签到,获得积分10
1秒前
肉肉完成签到 ,获得积分10
1秒前
鹿儿飞发布了新的文献求助10
1秒前
1秒前
小波完成签到 ,获得积分10
1秒前
Patty完成签到,获得积分10
1秒前
首席或雪月完成签到,获得积分10
1秒前
橘寄完成签到,获得积分10
1秒前
Luckqi6688完成签到,获得积分10
1秒前
你好纠结伦完成签到,获得积分10
1秒前
解语花发布了新的文献求助30
1秒前
2秒前
wu5757完成签到,获得积分20
2秒前
2秒前
Mandarine发布了新的文献求助30
2秒前
无花果应助theverve采纳,获得30
3秒前
3秒前
Chichi完成签到,获得积分10
3秒前
3秒前
称心寒松发布了新的文献求助10
4秒前
4秒前
4秒前
crytek发布了新的文献求助10
4秒前
你们才来完成签到,获得积分10
4秒前
jorgan完成签到,获得积分10
4秒前
英姑应助解语花采纳,获得10
4秒前
5秒前
夕荀发布了新的文献求助10
5秒前
埃尔拉发布了新的文献求助10
5秒前
乐安完成签到,获得积分10
5秒前
6秒前
Chichi发布了新的文献求助10
6秒前
HowesFeng发布了新的文献求助10
6秒前
7秒前
苏silence发布了新的文献求助10
7秒前
易楠发布了新的文献求助10
7秒前
ning完成签到,获得积分10
7秒前
六百六十六完成签到,获得积分10
7秒前
发发发发布了新的文献求助30
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573946
求助须知:如何正确求助?哪些是违规求助? 4660289
关于积分的说明 14728668
捐赠科研通 4600067
什么是DOI,文献DOI怎么找? 2524676
邀请新用户注册赠送积分活动 1495011
关于科研通互助平台的介绍 1465006