Machine Learning Prediction of TiO2-Coating Wettability Tuned via UV Exposure

超亲水性 润湿 接触角 材料科学 涂层 光催化 化学工程 生物系统 复合材料 有机化学 催化作用 生物 工程类 化学
作者
Mohamad Jafari Gukeh,Shashwata Moitra,Ali Noaman Ibrahim,Sybil Derrible,Constantine M. Megaridis
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:13 (38): 46171-46179 被引量:32
标识
DOI:10.1021/acsami.1c13262
摘要

Surfaces with extreme wettability (too low, superhydrophobic; too high, superhydrophilic) have attracted considerable attention over the past two decades. Titanium dioxide (TiO2) has been one of the most popular components for generating superhydrophobic/hydrophilic coatings. Combining TiO2 with ethanol and a commercial fluoroacrylic copolymer dispersion, known as PMC, can produce coatings with water contact angles approaching 170°. Another property of interest for this specific TiO2 formulation is its photocatalytic behavior, which causes the contact angle of water to be gradually reduced with rising timed exposure to UV light. While this formulation has been employed in many studies, there exists no quantitative guidance to determine or tune the contact angle (and thus wettability) with the composition of the coating and UV exposure time. In this article, machine learning models are employed to predict the required UV exposure time for any specified TiO2/PMC coating composition to attain a certain wettability (UV-reduced contact angle). For that purpose, eight different coating compositions were applied to glass slides and exposed to UV light for different time intervals. The collected contact-angle data was supplied to different regression models to designate the best method to predict the required UV exposure time for a prespecified wettability. Two types of machine learning models were used: (1) parametric and (2) nonparametric. The results showed a nonlinear behavior between the coating formulation and its contact angle attained after timed UV exposure. Nonparametric methods showed high accuracy and stability with general regression neural network (GRNN) performing best with an accuracy of 0.971, 0.977, and 0.933 on the test, train, and unseen data set, respectively. The present study not only provides quantitative guidance for producing coatings of specified wettability, but also presents a generalized methodology that could be employed for other functional coatings in technological applications requiring precise fluid/surface interactions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
luo发布了新的文献求助10
刚刚
花样年华发布了新的文献求助10
刚刚
陈霸下。完成签到,获得积分10
1秒前
哎呀发布了新的文献求助10
1秒前
研友_VZG7GZ应助不爱科研采纳,获得10
1秒前
传奇3应助塔木采纳,获得10
1秒前
2秒前
NexusExplorer应助努力的学采纳,获得10
2秒前
也行完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
YOLO完成签到,获得积分10
2秒前
菜鸟完成签到,获得积分20
2秒前
忧虑的乐驹完成签到,获得积分10
2秒前
3秒前
万能图书馆应助细腻砖头采纳,获得10
3秒前
yuzuzu完成签到,获得积分10
3秒前
ding应助cc采纳,获得10
4秒前
4秒前
4秒前
吕吕吕完成签到,获得积分10
4秒前
英俊的铭应助xj采纳,获得10
4秒前
彭于晏应助元谷雪采纳,获得10
4秒前
Chen完成签到,获得积分10
4秒前
初夏的晴天完成签到,获得积分10
5秒前
5秒前
Lucas应助Nnnnnn采纳,获得10
5秒前
菜鸟发布了新的文献求助10
6秒前
ilihe举报kecheng求助涉嫌违规
6秒前
深情安青应助也行采纳,获得10
6秒前
Dr.Yang完成签到,获得积分10
6秒前
lynn完成签到,获得积分10
6秒前
今后应助ladyguagua采纳,获得20
7秒前
7秒前
7秒前
7秒前
李健应助hailan采纳,获得10
8秒前
朱孟研发布了新的文献求助10
8秒前
8秒前
bkagyin应助怡然可乐采纳,获得10
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
King Tyrant 720
Lectures in probability theory and mathematical statistics - 3rd Edition 500
The Synthesis of Simplified Analogues of Crambescin B Carboxylic Acid and Their Inhibitory Activity of Voltage-Gated Sodium Channels: New Aspects of Structure–Activity Relationships 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5597618
求助须知:如何正确求助?哪些是违规求助? 4683110
关于积分的说明 14828504
捐赠科研通 4661108
什么是DOI,文献DOI怎么找? 2536751
邀请新用户注册赠送积分活动 1504315
关于科研通互助平台的介绍 1470215