Machine Learning Prediction of TiO2-Coating Wettability Tuned via UV Exposure

超亲水性 润湿 接触角 材料科学 涂层 光催化 化学工程 生物系统 复合材料 有机化学 催化作用 生物 工程类 化学
作者
Mohamad Jafari Gukeh,Shashwata Moitra,Ali Noaman Ibrahim,Sybil Derrible,Constantine M. Megaridis
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:13 (38): 46171-46179 被引量:24
标识
DOI:10.1021/acsami.1c13262
摘要

Surfaces with extreme wettability (too low, superhydrophobic; too high, superhydrophilic) have attracted considerable attention over the past two decades. Titanium dioxide (TiO2) has been one of the most popular components for generating superhydrophobic/hydrophilic coatings. Combining TiO2 with ethanol and a commercial fluoroacrylic copolymer dispersion, known as PMC, can produce coatings with water contact angles approaching 170°. Another property of interest for this specific TiO2 formulation is its photocatalytic behavior, which causes the contact angle of water to be gradually reduced with rising timed exposure to UV light. While this formulation has been employed in many studies, there exists no quantitative guidance to determine or tune the contact angle (and thus wettability) with the composition of the coating and UV exposure time. In this article, machine learning models are employed to predict the required UV exposure time for any specified TiO2/PMC coating composition to attain a certain wettability (UV-reduced contact angle). For that purpose, eight different coating compositions were applied to glass slides and exposed to UV light for different time intervals. The collected contact-angle data was supplied to different regression models to designate the best method to predict the required UV exposure time for a prespecified wettability. Two types of machine learning models were used: (1) parametric and (2) nonparametric. The results showed a nonlinear behavior between the coating formulation and its contact angle attained after timed UV exposure. Nonparametric methods showed high accuracy and stability with general regression neural network (GRNN) performing best with an accuracy of 0.971, 0.977, and 0.933 on the test, train, and unseen data set, respectively. The present study not only provides quantitative guidance for producing coatings of specified wettability, but also presents a generalized methodology that could be employed for other functional coatings in technological applications requiring precise fluid/surface interactions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
领导范儿应助wenjian采纳,获得10
1秒前
1秒前
奇拉维特完成签到 ,获得积分10
1秒前
2秒前
Apple发布了新的文献求助10
2秒前
wtg完成签到,获得积分10
2秒前
在水一方应助Sheila采纳,获得10
3秒前
英姑应助YE采纳,获得30
3秒前
ysl发布了新的文献求助30
3秒前
3秒前
cilan完成签到 ,获得积分10
6秒前
义气的妙松完成签到,获得积分10
6秒前
yangjing发布了新的文献求助10
7秒前
rosexu发布了新的文献求助10
7秒前
盘尼西林发布了新的文献求助10
8秒前
科研通AI2S应助我是125采纳,获得10
8秒前
李健的小迷弟应助arkamar采纳,获得10
9秒前
Xiaoxiao完成签到,获得积分10
9秒前
cilan发布了新的文献求助10
9秒前
SciGPT应助William鉴哲采纳,获得10
9秒前
10秒前
咩咩完成签到,获得积分20
11秒前
合一海盗应助wtg采纳,获得200
11秒前
11秒前
Grayball应助ccc采纳,获得10
11秒前
bkagyin应助猪猪hero采纳,获得10
12秒前
12秒前
科研通AI5应助顺利毕业采纳,获得10
13秒前
领导范儿应助spray采纳,获得30
13秒前
13秒前
长风完成签到,获得积分10
14秒前
15秒前
吴岳发布了新的文献求助10
15秒前
科研通AI2S应助我是125采纳,获得10
16秒前
涛涛完成签到,获得积分10
16秒前
轩辕德地发布了新的文献求助10
17秒前
科研通AI2S应助jidou1011采纳,获得10
17秒前
魔幻的妖丽完成签到 ,获得积分10
18秒前
黄晓杰2024完成签到,获得积分10
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808