Environmental chemical exposure dynamics and machine learning-based prediction of diabetes mellitus

糖尿病 Lasso(编程语言) 随机森林 接收机工作特性 试验装置 医学 机器学习 人工智能 回归 内科学 计算机科学 统计 数学 内分泌学 万维网
作者
Hongcheng Wei,Jie Sun,Wenqi Shan,Wenwen Xiao,Bingqian Wang,Xuan Ma,Weiyue Hu,Xinru Wang,Yankai Xia
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:806 (Pt 2): 150674-150674 被引量:73
标识
DOI:10.1016/j.scitotenv.2021.150674
摘要

With dramatically increasing prevalence, diabetes mellitus has imposed a tremendous toll on individual well-being. Humans are exposed to various environmental chemicals, which have been postulated as underappreciated but potentially modifiable diabetes risk factors. To determine the utility of environmental chemical exposure in predicting diabetes mellitus. A total of 8501 eligible participants from NHANES 2005–2016 were randomly assigned to a discovery (N = 5953) set and a validation (N = 2548) set. We applied random forest (RF) and least absolute shrinkage and selection operator (LASSO) regression with 10-fold cross-validation in the discovery set to select features, and built an optimal model to predict diabetes mellitus, blood insulin, fasting plasma glucose (FPG) and 2-h plasma glucose after oral glucose tolerance test (2-h PG after OGTT). The machine learning model using LASSO regression predicted diabetes with an area under the receiver operating characteristics (AUROC) of 0.80 and 0.78 in the discovery set and validation set, respectively. The linear model predicted blood insulin level with an R2 of 0.42 and 0.40 in the discovery set and validation set, respectively. For FPG, the discovery set and validation set yielded an R2 of 0.16 and 0.15, respectively. For 2-h PG after OGTT, the discovery set and validation set yielded an R2 of 0.18 and 0.17, respectively. We used environmental chemical exposure, constructed machine learning models and achieved relatively accurate prediction for diabetes, emphasizing the predictive value of widespread environmental chemicals for complicated diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小二郎应助搞笑有毅力采纳,获得10
刚刚
文艺宛海发布了新的文献求助10
1秒前
YG完成签到,获得积分10
1秒前
迷人的问蕊完成签到,获得积分10
1秒前
郭志晟发布了新的文献求助10
1秒前
香菜碗里来完成签到,获得积分10
2秒前
Linn_Z发布了新的文献求助30
2秒前
李健应助大胆诗云采纳,获得10
2秒前
yan完成签到,获得积分10
2秒前
3秒前
3秒前
鲜艳的沛春完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助30
3秒前
4秒前
4秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
6秒前
专注的问寒应助小猫宝采纳,获得50
6秒前
6秒前
zxd发布了新的文献求助10
6秒前
离离发布了新的文献求助10
7秒前
Orange应助不爱看文献采纳,获得10
7秒前
一米阳光发布了新的文献求助10
8秒前
世安完成签到,获得积分10
9秒前
9秒前
zzz发布了新的文献求助10
10秒前
丝绒发布了新的文献求助10
10秒前
无情的函发布了新的文献求助10
11秒前
dm发布了新的文献求助10
13秒前
13秒前
13秒前
berg发布了新的文献求助10
13秒前
13秒前
13秒前
guo完成签到,获得积分10
14秒前
英俊的铭应助丝绒采纳,获得10
14秒前
量子星尘发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718326
求助须知:如何正确求助?哪些是违规求助? 5252062
关于积分的说明 15285429
捐赠科研通 4868586
什么是DOI,文献DOI怎么找? 2614247
邀请新用户注册赠送积分活动 1564094
关于科研通互助平台的介绍 1521578