Environmental chemical exposure dynamics and machine learning-based prediction of diabetes mellitus

糖尿病 Lasso(编程语言) 随机森林 接收机工作特性 试验装置 医学 机器学习 人工智能 回归 内科学 计算机科学 统计 数学 内分泌学 万维网
作者
Hongcheng Wei,Jie Sun,Wenqi Shan,Wenwen Xiao,Bingqian Wang,Xuan Ma,Weiyue Hu,Xinru Wang,Yankai Xia
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:806: 150674-150674 被引量:42
标识
DOI:10.1016/j.scitotenv.2021.150674
摘要

With dramatically increasing prevalence, diabetes mellitus has imposed a tremendous toll on individual well-being. Humans are exposed to various environmental chemicals, which have been postulated as underappreciated but potentially modifiable diabetes risk factors. To determine the utility of environmental chemical exposure in predicting diabetes mellitus. A total of 8501 eligible participants from NHANES 2005–2016 were randomly assigned to a discovery (N = 5953) set and a validation (N = 2548) set. We applied random forest (RF) and least absolute shrinkage and selection operator (LASSO) regression with 10-fold cross-validation in the discovery set to select features, and built an optimal model to predict diabetes mellitus, blood insulin, fasting plasma glucose (FPG) and 2-h plasma glucose after oral glucose tolerance test (2-h PG after OGTT). The machine learning model using LASSO regression predicted diabetes with an area under the receiver operating characteristics (AUROC) of 0.80 and 0.78 in the discovery set and validation set, respectively. The linear model predicted blood insulin level with an R2 of 0.42 and 0.40 in the discovery set and validation set, respectively. For FPG, the discovery set and validation set yielded an R2 of 0.16 and 0.15, respectively. For 2-h PG after OGTT, the discovery set and validation set yielded an R2 of 0.18 and 0.17, respectively. We used environmental chemical exposure, constructed machine learning models and achieved relatively accurate prediction for diabetes, emphasizing the predictive value of widespread environmental chemicals for complicated diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
靓丽的发箍完成签到,获得积分10
刚刚
刚刚
不配.应助NZH采纳,获得20
刚刚
桔梗花开发布了新的文献求助30
1秒前
1秒前
爱撒娇的鱼应助qrj采纳,获得10
1秒前
传奇3应助爱喝水采纳,获得30
2秒前
4秒前
5秒前
彭苗苗发布了新的文献求助10
6秒前
N7发布了新的文献求助10
7秒前
9秒前
10秒前
小jiojio的猪完成签到,获得积分10
11秒前
12秒前
ssx关注了科研通微信公众号
13秒前
李健应助小羊转圈圈采纳,获得10
15秒前
ll完成签到,获得积分10
15秒前
16秒前
16秒前
Orange应助mm采纳,获得10
18秒前
19秒前
chen发布了新的文献求助10
19秒前
19秒前
Nnn完成签到,获得积分10
20秒前
CHSLN完成签到 ,获得积分10
21秒前
凶狠的盼柳完成签到,获得积分10
21秒前
21秒前
ll发布了新的文献求助10
23秒前
chen完成签到,获得积分10
24秒前
eeeee发布了新的文献求助10
24秒前
ssx发布了新的文献求助10
27秒前
我想查文献完成签到,获得积分10
28秒前
Hello应助科研通管家采纳,获得10
28秒前
Lucas应助科研通管家采纳,获得10
28秒前
在水一方应助科研通管家采纳,获得10
28秒前
29秒前
29秒前
N7完成签到,获得积分10
30秒前
不配.给123的求助进行了留言
32秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138630
求助须知:如何正确求助?哪些是违规求助? 2789630
关于积分的说明 7791721
捐赠科研通 2445972
什么是DOI,文献DOI怎么找? 1300801
科研通“疑难数据库(出版商)”最低求助积分说明 626058
版权声明 601079