Environmental chemical exposure dynamics and machine learning-based prediction of diabetes mellitus

糖尿病 Lasso(编程语言) 随机森林 接收机工作特性 试验装置 医学 机器学习 人工智能 回归 内科学 计算机科学 统计 数学 内分泌学 万维网
作者
Hongcheng Wei,Jie Sun,Wenqi Shan,Wenwen Xiao,Bingqian Wang,Xuan Ma,Weiyue Hu,Xinru Wang,Yankai Xia
出处
期刊:Science of The Total Environment [Elsevier BV]
卷期号:806: 150674-150674 被引量:61
标识
DOI:10.1016/j.scitotenv.2021.150674
摘要

With dramatically increasing prevalence, diabetes mellitus has imposed a tremendous toll on individual well-being. Humans are exposed to various environmental chemicals, which have been postulated as underappreciated but potentially modifiable diabetes risk factors. To determine the utility of environmental chemical exposure in predicting diabetes mellitus. A total of 8501 eligible participants from NHANES 2005–2016 were randomly assigned to a discovery (N = 5953) set and a validation (N = 2548) set. We applied random forest (RF) and least absolute shrinkage and selection operator (LASSO) regression with 10-fold cross-validation in the discovery set to select features, and built an optimal model to predict diabetes mellitus, blood insulin, fasting plasma glucose (FPG) and 2-h plasma glucose after oral glucose tolerance test (2-h PG after OGTT). The machine learning model using LASSO regression predicted diabetes with an area under the receiver operating characteristics (AUROC) of 0.80 and 0.78 in the discovery set and validation set, respectively. The linear model predicted blood insulin level with an R2 of 0.42 and 0.40 in the discovery set and validation set, respectively. For FPG, the discovery set and validation set yielded an R2 of 0.16 and 0.15, respectively. For 2-h PG after OGTT, the discovery set and validation set yielded an R2 of 0.18 and 0.17, respectively. We used environmental chemical exposure, constructed machine learning models and achieved relatively accurate prediction for diabetes, emphasizing the predictive value of widespread environmental chemicals for complicated diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Liolsy发布了新的文献求助10
刚刚
mix关闭了mix文献求助
刚刚
jianguo发布了新的文献求助10
刚刚
CR7应助yy采纳,获得20
1秒前
忧郁柠檬完成签到,获得积分10
1秒前
1秒前
1秒前
Orange应助猛猛冲采纳,获得10
2秒前
2秒前
3秒前
3秒前
凶凶完成签到,获得积分10
3秒前
4秒前
wen发布了新的文献求助10
4秒前
现代的访曼应助ffff采纳,获得10
4秒前
5秒前
脑洞疼应助起床了吗采纳,获得30
5秒前
6秒前
G秋发布了新的文献求助10
6秒前
子剑完成签到,获得积分10
7秒前
7秒前
Cain完成签到,获得积分10
8秒前
巴达天使完成签到,获得积分10
8秒前
8秒前
核桃应助坐井观天采纳,获得10
8秒前
jjgbmt完成签到,获得积分10
8秒前
9秒前
9秒前
9秒前
烟花应助塞上牧羊采纳,获得10
9秒前
neckerzhu完成签到 ,获得积分10
9秒前
可爱的函函应助Liolsy采纳,获得10
10秒前
10秒前
老迟到的秋完成签到,获得积分10
10秒前
11秒前
11秒前
传奇3应助jianguo采纳,获得10
11秒前
Miles发布了新的文献求助30
12秒前
星辰大海应助wen采纳,获得30
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950754
求助须知:如何正确求助?哪些是违规求助? 3496198
关于积分的说明 11080706
捐赠科研通 3226588
什么是DOI,文献DOI怎么找? 1783939
邀请新用户注册赠送积分活动 867955
科研通“疑难数据库(出版商)”最低求助积分说明 800993