Environmental chemical exposure dynamics and machine learning-based prediction of diabetes mellitus

糖尿病 Lasso(编程语言) 随机森林 接收机工作特性 试验装置 医学 机器学习 人工智能 回归 内科学 计算机科学 统计 数学 内分泌学 万维网
作者
Hongcheng Wei,Jie Sun,Wenqi Shan,Wenwen Xiao,Bingqian Wang,Xuan Ma,Weiyue Hu,Xinru Wang,Yankai Xia
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:806: 150674-150674 被引量:49
标识
DOI:10.1016/j.scitotenv.2021.150674
摘要

With dramatically increasing prevalence, diabetes mellitus has imposed a tremendous toll on individual well-being. Humans are exposed to various environmental chemicals, which have been postulated as underappreciated but potentially modifiable diabetes risk factors. To determine the utility of environmental chemical exposure in predicting diabetes mellitus. A total of 8501 eligible participants from NHANES 2005–2016 were randomly assigned to a discovery (N = 5953) set and a validation (N = 2548) set. We applied random forest (RF) and least absolute shrinkage and selection operator (LASSO) regression with 10-fold cross-validation in the discovery set to select features, and built an optimal model to predict diabetes mellitus, blood insulin, fasting plasma glucose (FPG) and 2-h plasma glucose after oral glucose tolerance test (2-h PG after OGTT). The machine learning model using LASSO regression predicted diabetes with an area under the receiver operating characteristics (AUROC) of 0.80 and 0.78 in the discovery set and validation set, respectively. The linear model predicted blood insulin level with an R2 of 0.42 and 0.40 in the discovery set and validation set, respectively. For FPG, the discovery set and validation set yielded an R2 of 0.16 and 0.15, respectively. For 2-h PG after OGTT, the discovery set and validation set yielded an R2 of 0.18 and 0.17, respectively. We used environmental chemical exposure, constructed machine learning models and achieved relatively accurate prediction for diabetes, emphasizing the predictive value of widespread environmental chemicals for complicated diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bkagyin应助YL采纳,获得10
刚刚
共享精神应助一直采纳,获得10
刚刚
1秒前
无聊先知完成签到,获得积分10
1秒前
传奇3应助CC采纳,获得10
1秒前
Promise发布了新的文献求助10
1秒前
习习发布了新的文献求助100
2秒前
2秒前
3秒前
someone完成签到,获得积分10
3秒前
3秒前
wanyanjin应助南方姑娘采纳,获得10
3秒前
Star1983发布了新的文献求助10
4秒前
岁月轮回发布了新的文献求助10
4秒前
4秒前
如晴完成签到,获得积分10
4秒前
平淡的芯阳完成签到 ,获得积分10
4秒前
JonyiCheng发布了新的文献求助10
5秒前
5秒前
帅气的乘云完成签到,获得积分10
5秒前
吃点红糖馒头完成签到,获得积分10
6秒前
良月二十一完成签到 ,获得积分10
6秒前
斯文败类应助听粥采纳,获得10
7秒前
可爱的函函应助strings采纳,获得10
7秒前
7秒前
仚屳完成签到,获得积分10
7秒前
Naixi完成签到,获得积分10
7秒前
今后应助HU采纳,获得10
7秒前
su完成签到 ,获得积分10
9秒前
平淡的依白完成签到,获得积分20
9秒前
xinchengzhu关注了科研通微信公众号
9秒前
爱静静应助tao采纳,获得10
10秒前
iNk应助Rebekah采纳,获得10
10秒前
HopeStar完成签到,获得积分10
11秒前
树叶有专攻完成签到,获得积分10
11秒前
11秒前
田様应助Mia采纳,获得20
11秒前
所所应助吃点红糖馒头采纳,获得10
11秒前
今后应助PSCs采纳,获得10
11秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678