Environmental chemical exposure dynamics and machine learning-based prediction of diabetes mellitus

糖尿病 Lasso(编程语言) 随机森林 接收机工作特性 试验装置 医学 机器学习 人工智能 回归 内科学 计算机科学 统计 数学 内分泌学 万维网
作者
Hongcheng Wei,Jie Sun,Wenqi Shan,Wenwen Xiao,Bingqian Wang,Xuan Ma,Weiyue Hu,Xinru Wang,Yankai Xia
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:806 (Pt 2): 150674-150674 被引量:73
标识
DOI:10.1016/j.scitotenv.2021.150674
摘要

With dramatically increasing prevalence, diabetes mellitus has imposed a tremendous toll on individual well-being. Humans are exposed to various environmental chemicals, which have been postulated as underappreciated but potentially modifiable diabetes risk factors. To determine the utility of environmental chemical exposure in predicting diabetes mellitus. A total of 8501 eligible participants from NHANES 2005–2016 were randomly assigned to a discovery (N = 5953) set and a validation (N = 2548) set. We applied random forest (RF) and least absolute shrinkage and selection operator (LASSO) regression with 10-fold cross-validation in the discovery set to select features, and built an optimal model to predict diabetes mellitus, blood insulin, fasting plasma glucose (FPG) and 2-h plasma glucose after oral glucose tolerance test (2-h PG after OGTT). The machine learning model using LASSO regression predicted diabetes with an area under the receiver operating characteristics (AUROC) of 0.80 and 0.78 in the discovery set and validation set, respectively. The linear model predicted blood insulin level with an R2 of 0.42 and 0.40 in the discovery set and validation set, respectively. For FPG, the discovery set and validation set yielded an R2 of 0.16 and 0.15, respectively. For 2-h PG after OGTT, the discovery set and validation set yielded an R2 of 0.18 and 0.17, respectively. We used environmental chemical exposure, constructed machine learning models and achieved relatively accurate prediction for diabetes, emphasizing the predictive value of widespread environmental chemicals for complicated diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Szw666完成签到,获得积分10
3秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
jojo完成签到 ,获得积分10
5秒前
6秒前
lll完成签到,获得积分20
6秒前
VAN发布了新的文献求助10
9秒前
徐小美完成签到,获得积分20
10秒前
传奇3应助lll采纳,获得30
10秒前
老仙翁完成签到,获得积分10
10秒前
lilyz615完成签到,获得积分10
12秒前
13秒前
ding应助听见采纳,获得10
15秒前
15秒前
16秒前
斯文败类应助kuny采纳,获得10
16秒前
77发布了新的文献求助10
17秒前
aniver完成签到 ,获得积分10
18秒前
19秒前
痕丶歆完成签到 ,获得积分10
20秒前
量子星尘发布了新的文献求助10
21秒前
JY完成签到,获得积分10
21秒前
酷波er应助77采纳,获得10
21秒前
开朗啤酒完成签到,获得积分10
22秒前
独特的缘分完成签到,获得积分10
23秒前
震动的听安完成签到,获得积分10
24秒前
调皮语雪完成签到 ,获得积分10
26秒前
大力向南完成签到,获得积分10
26秒前
所所应助xbw采纳,获得10
28秒前
28秒前
28秒前
量子星尘发布了新的文献求助10
29秒前
31秒前
Ooo完成签到 ,获得积分10
32秒前
Liangstar完成签到 ,获得积分10
32秒前
小蘑菇应助清脆南霜采纳,获得10
33秒前
小蘑菇应助QinQin采纳,获得10
34秒前
Lucas应助鲨鱼游泳教练采纳,获得10
34秒前
bunny发布了新的文献求助10
35秒前
薯愿完成签到,获得积分10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742197
求助须知:如何正确求助?哪些是违规求助? 5407018
关于积分的说明 15344388
捐赠科研通 4883635
什么是DOI,文献DOI怎么找? 2625185
邀请新用户注册赠送积分活动 1574043
关于科研通互助平台的介绍 1530978