Deep learning-based gas identification and quantification with auto-tuning of hyper-parameters

计算机科学 人工智能 电子鼻 模糊逻辑 深度学习 人工神经网络 机器学习 鉴定(生物学) 领域(数学) 特征工程 特征选择 模式识别(心理学) 数学 植物 生物 纯数学
作者
Vishakha Pareek,Santanu Chaudhury
出处
期刊:Soft Computing [Springer Nature]
卷期号:25 (22): 14155-14170 被引量:15
标识
DOI:10.1007/s00500-021-06222-1
摘要

In this work, we propose two deep learning-based architectures tailored for gas identification and quantification, which automatically tune hyper-parameters of the network for optimal performance. The immense success of deep learning in the field of computer vision and natural language processing inspired us to design deep learning-based gas identification and quantification network. The first architecture is proposed for gas quantification, which is based on 1D-CNN. It makes use of raw time-series gas sensor array data and provides the concentration of each gas in a mixture of gases. The second architecture is presented for gas quantification, which is based on a deep belief network combined with drift-aware feature adaptation strategy. The proposed models identify and quantify the gases with improved accuracy despite the presence of sensor drift. Additionally, hyper-parameters of both the networks are automatically tuned for optimal performance. Although several pattern recognition methods related to machine learning, fuzzy logic and hybrid models have been used to identify gas and quantify the gases in the mixture, the performances of these techniques enormously depend on the feature engineering and selection of hyper-parameters. Experimental results show that the proposed methods are an effective technique for identifying gases and quantifying the mixture of gases for e-nose data. We also present that the proposed methods outperforms various other methods and can provide higher identification and quantification accuracy in the pres-ence of sensor drift.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HH发布了新的文献求助10
刚刚
1秒前
1秒前
李爱国应助小付采纳,获得10
4秒前
歆兴欣完成签到 ,获得积分10
6秒前
田様应助医无止境采纳,获得10
7秒前
陈补天发布了新的文献求助10
7秒前
8秒前
kk发布了新的文献求助10
8秒前
英姑应助渔舟唱晚采纳,获得10
8秒前
10秒前
Xdz完成签到 ,获得积分10
12秒前
小先生发布了新的文献求助10
13秒前
漂亮的秋天完成签到 ,获得积分10
13秒前
wwdd完成签到,获得积分10
14秒前
14秒前
15秒前
16秒前
17秒前
英姑应助Luke采纳,获得10
19秒前
19秒前
Singularity举报朴实忆安求助涉嫌违规
21秒前
Sseven发布了新的文献求助10
21秒前
22秒前
123发布了新的文献求助20
22秒前
Hello应助Ash采纳,获得10
22秒前
22秒前
23秒前
Menand发布了新的文献求助10
23秒前
23秒前
26秒前
26秒前
Echo发布了新的文献求助10
27秒前
蕊儿歪歪发布了新的文献求助10
27秒前
27秒前
zzihy完成签到,获得积分10
29秒前
29秒前
云殳完成签到,获得积分20
29秒前
悦耳成危发布了新的文献求助10
29秒前
choshuenco完成签到,获得积分10
30秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3302738
求助须知:如何正确求助?哪些是违规求助? 2937103
关于积分的说明 8480454
捐赠科研通 2610996
什么是DOI,文献DOI怎么找? 1425486
科研通“疑难数据库(出版商)”最低求助积分说明 662367
邀请新用户注册赠送积分活动 646746