Deep learning-based gas identification and quantification with auto-tuning of hyper-parameters

计算机科学 人工智能 电子鼻 模糊逻辑 深度学习 人工神经网络 机器学习 鉴定(生物学) 领域(数学) 特征工程 特征选择 模式识别(心理学) 数学 植物 生物 纯数学
作者
Vishakha Pareek,Santanu Chaudhury
出处
期刊:Soft Computing [Springer Nature]
卷期号:25 (22): 14155-14170 被引量:15
标识
DOI:10.1007/s00500-021-06222-1
摘要

In this work, we propose two deep learning-based architectures tailored for gas identification and quantification, which automatically tune hyper-parameters of the network for optimal performance. The immense success of deep learning in the field of computer vision and natural language processing inspired us to design deep learning-based gas identification and quantification network. The first architecture is proposed for gas quantification, which is based on 1D-CNN. It makes use of raw time-series gas sensor array data and provides the concentration of each gas in a mixture of gases. The second architecture is presented for gas quantification, which is based on a deep belief network combined with drift-aware feature adaptation strategy. The proposed models identify and quantify the gases with improved accuracy despite the presence of sensor drift. Additionally, hyper-parameters of both the networks are automatically tuned for optimal performance. Although several pattern recognition methods related to machine learning, fuzzy logic and hybrid models have been used to identify gas and quantify the gases in the mixture, the performances of these techniques enormously depend on the feature engineering and selection of hyper-parameters. Experimental results show that the proposed methods are an effective technique for identifying gases and quantifying the mixture of gases for e-nose data. We also present that the proposed methods outperforms various other methods and can provide higher identification and quantification accuracy in the pres-ence of sensor drift.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_8yN60L完成签到,获得积分10
1秒前
zhanzhanzhan发布了新的文献求助10
1秒前
科研通AI5应助自爱悠然采纳,获得10
1秒前
1秒前
Accept应助胡枝子采纳,获得30
1秒前
Strike发布了新的文献求助10
2秒前
Rsoup完成签到,获得积分10
2秒前
3秒前
zz发布了新的文献求助10
3秒前
sfzz完成签到,获得积分10
3秒前
3秒前
如履平川完成签到 ,获得积分10
3秒前
大个应助阳光海云采纳,获得50
3秒前
3秒前
新青年完成签到,获得积分0
3秒前
3秒前
现代的又柔应助研友_8yN60L采纳,获得10
4秒前
4秒前
李健应助傲娇的云朵采纳,获得10
4秒前
4秒前
4秒前
liudiqiu完成签到,获得积分10
4秒前
Akashi完成签到,获得积分10
4秒前
风中珩完成签到 ,获得积分10
5秒前
LIU发布了新的文献求助10
5秒前
5秒前
李知恩完成签到,获得积分10
6秒前
6秒前
EthanChan完成签到,获得积分10
6秒前
6秒前
野性的孤菱完成签到,获得积分10
6秒前
茂密的头发完成签到,获得积分10
7秒前
7秒前
Hongsong发布了新的文献求助10
8秒前
勤恳马里奥完成签到,获得积分0
9秒前
9秒前
yzy发布了新的文献求助10
9秒前
10秒前
10秒前
科目三应助AA采纳,获得10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740