Machine learning‐based model for prediction of power consumption in smart grid‐ smart way towards smart city

智能电网 计算机科学 网格 可扩展性 分布式计算 电气工程 数据库 工程类 几何学 数学
作者
Shamik Tiwari,Anurag Jain,Nada Ahmed,. Charu,Lulwah M. Alkwai,Alaa Kamal Yousif Dafhalla,Sawsan Ali Saad Hamad
出处
期刊:Expert Systems [Wiley]
卷期号:39 (5) 被引量:30
标识
DOI:10.1111/exsy.12832
摘要

Abstract A smart city is an idea that is realized by the computing of a large amount of data collected through sensors, cameras, and other electronic methods to provide services, manage resources and solve daily life problems. The transformation of the conventional grid to a smart grid is one step in the direction towards smart city realization. An electric grid is composed of control stations, generation centres, transformers, communication lines, and distributors, which helps in transferring power from the power station to domestic and commercial consumers. Present electric grids are not smart enough that they can estimate the varying power requirement of the consumer. Also, these conventional grids are not enough robust and scalable. This has become the motivation for shifting from a conventional grid to a smart grid. The smart grid is a kind of power grid, which is robust and adapts itself to the varying needs of the consumer and self‐healing in nature. In this way, the transformation from a conventional grid to a smart grid will help the government to make a smart city. The emergence of machine learning has helped in the prediction of the stability of the grid under the dynamically changing requirement of the consumer. Also, the usage of a variety of sensors will help in the collection of real‐time consumption data. Through machine learning algorithms, we can gain an insight view of the collected data. This has helped the smart grid to convert into a robust smart grid, as this will help in avoiding the situation of failure. In this work, the authors have applied logistic regression, decision tree, support vector machine, linear discriminant analysis, quadratic discriminant analysis, naïve Bayes, random forest, and k‐nearest neighbour algorithms to predict the stability of the grid. The authors have used the smart grid stability dataset freely available on Kaggle to train and test the models. It has been found that a model designed using the support vector machine algorithm has given the most accurate result.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
健达奇趣蛋完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
2秒前
欣欣完成签到,获得积分10
2秒前
李志伟完成签到,获得积分10
2秒前
所所应助mmcc采纳,获得10
3秒前
貔貅完成签到,获得积分20
3秒前
小马甲应助昔年采纳,获得10
3秒前
思源应助胡图图采纳,获得10
3秒前
4秒前
yao发布了新的文献求助10
4秒前
che66发布了新的文献求助10
4秒前
芋泥蛋糕发布了新的文献求助30
4秒前
zjh11143发布了新的文献求助10
5秒前
执着大山完成签到,获得积分10
5秒前
周周一个发布了新的文献求助10
5秒前
5秒前
haowang1135发布了新的文献求助10
5秒前
吴裕玲发布了新的文献求助10
6秒前
Ljx应助跳跳采纳,获得10
6秒前
6秒前
6秒前
ding应助再一采纳,获得10
6秒前
传奇3应助幽默尔蓝采纳,获得10
7秒前
7秒前
诗瑜发布了新的文献求助10
7秒前
7秒前
寒冷威完成签到,获得积分10
7秒前
jialiang发布了新的文献求助10
8秒前
汉堡包应助bt4567采纳,获得10
8秒前
百事可乐发布了新的文献求助10
8秒前
ding应助务实蜻蜓采纳,获得10
8秒前
PlanetaryLayer完成签到,获得积分10
9秒前
9秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648015
求助须知:如何正确求助?哪些是违规求助? 4774710
关于积分的说明 15042383
捐赠科研通 4807069
什么是DOI,文献DOI怎么找? 2570494
邀请新用户注册赠送积分活动 1527283
关于科研通互助平台的介绍 1486389