已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine learning‐based model for prediction of power consumption in smart grid‐ smart way towards smart city

智能电网 计算机科学 网格 可扩展性 分布式计算 电气工程 数据库 工程类 几何学 数学
作者
Shamik Tiwari,Anurag Jain,Nada Ahmed,. Charu,Lulwah M. Alkwai,Alaa Kamal Yousif Dafhalla,Sawsan Ali Saad Hamad
出处
期刊:Expert Systems [Wiley]
卷期号:39 (5) 被引量:30
标识
DOI:10.1111/exsy.12832
摘要

Abstract A smart city is an idea that is realized by the computing of a large amount of data collected through sensors, cameras, and other electronic methods to provide services, manage resources and solve daily life problems. The transformation of the conventional grid to a smart grid is one step in the direction towards smart city realization. An electric grid is composed of control stations, generation centres, transformers, communication lines, and distributors, which helps in transferring power from the power station to domestic and commercial consumers. Present electric grids are not smart enough that they can estimate the varying power requirement of the consumer. Also, these conventional grids are not enough robust and scalable. This has become the motivation for shifting from a conventional grid to a smart grid. The smart grid is a kind of power grid, which is robust and adapts itself to the varying needs of the consumer and self‐healing in nature. In this way, the transformation from a conventional grid to a smart grid will help the government to make a smart city. The emergence of machine learning has helped in the prediction of the stability of the grid under the dynamically changing requirement of the consumer. Also, the usage of a variety of sensors will help in the collection of real‐time consumption data. Through machine learning algorithms, we can gain an insight view of the collected data. This has helped the smart grid to convert into a robust smart grid, as this will help in avoiding the situation of failure. In this work, the authors have applied logistic regression, decision tree, support vector machine, linear discriminant analysis, quadratic discriminant analysis, naïve Bayes, random forest, and k‐nearest neighbour algorithms to predict the stability of the grid. The authors have used the smart grid stability dataset freely available on Kaggle to train and test the models. It has been found that a model designed using the support vector machine algorithm has given the most accurate result.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助顺心的舞蹈采纳,获得10
刚刚
令宏完成签到,获得积分10
5秒前
风鱼完成签到 ,获得积分20
8秒前
Koala完成签到,获得积分10
14秒前
14秒前
令宏发布了新的文献求助10
15秒前
向东东完成签到,获得积分10
21秒前
笑点低的硬币完成签到,获得积分10
22秒前
23秒前
25秒前
斜玉完成签到,获得积分10
26秒前
vivian发布了新的文献求助10
27秒前
Xieyusen发布了新的文献求助10
31秒前
tuanheqi发布了新的文献求助20
32秒前
冷静新烟发布了新的文献求助10
34秒前
iorpi完成签到,获得积分10
38秒前
宇宇完成签到 ,获得积分10
38秒前
太叔十三完成签到 ,获得积分10
41秒前
44秒前
刘天宇完成签到 ,获得积分10
44秒前
充电宝应助焦糖采纳,获得10
44秒前
zy完成签到 ,获得积分10
45秒前
Omni完成签到 ,获得积分0
46秒前
SPLjoker完成签到 ,获得积分10
46秒前
冷艳薯片完成签到,获得积分10
47秒前
gjm完成签到,获得积分10
48秒前
52秒前
小L完成签到 ,获得积分10
52秒前
英勇的红酒完成签到 ,获得积分10
55秒前
56秒前
julien完成签到,获得积分10
57秒前
58秒前
隐形曼青应助ttt采纳,获得10
59秒前
59秒前
大个应助科研进化中采纳,获得10
1分钟前
千倾完成签到 ,获得积分10
1分钟前
生动夏青完成签到,获得积分10
1分钟前
ho hou h发布了新的文献求助10
1分钟前
1分钟前
在水一方应助旨酒欣欣采纳,获得10
1分钟前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965486
求助须知:如何正确求助?哪些是违规求助? 3510790
关于积分的说明 11155096
捐赠科研通 3245285
什么是DOI,文献DOI怎么找? 1792783
邀请新用户注册赠送积分活动 874096
科研通“疑难数据库(出版商)”最低求助积分说明 804171