Machine learning‐based model for prediction of power consumption in smart grid‐ smart way towards smart city

智能电网 计算机科学 网格 可扩展性 分布式计算 电气工程 数据库 工程类 几何学 数学
作者
Shamik Tiwari,Anurag Jain,Nada Ahmed,. Charu,Lulwah M. Alkwai,Alaa Kamal Yousif Dafhalla,Sawsan Ali Saad Hamad
出处
期刊:Expert Systems [Wiley]
卷期号:39 (5) 被引量:30
标识
DOI:10.1111/exsy.12832
摘要

Abstract A smart city is an idea that is realized by the computing of a large amount of data collected through sensors, cameras, and other electronic methods to provide services, manage resources and solve daily life problems. The transformation of the conventional grid to a smart grid is one step in the direction towards smart city realization. An electric grid is composed of control stations, generation centres, transformers, communication lines, and distributors, which helps in transferring power from the power station to domestic and commercial consumers. Present electric grids are not smart enough that they can estimate the varying power requirement of the consumer. Also, these conventional grids are not enough robust and scalable. This has become the motivation for shifting from a conventional grid to a smart grid. The smart grid is a kind of power grid, which is robust and adapts itself to the varying needs of the consumer and self‐healing in nature. In this way, the transformation from a conventional grid to a smart grid will help the government to make a smart city. The emergence of machine learning has helped in the prediction of the stability of the grid under the dynamically changing requirement of the consumer. Also, the usage of a variety of sensors will help in the collection of real‐time consumption data. Through machine learning algorithms, we can gain an insight view of the collected data. This has helped the smart grid to convert into a robust smart grid, as this will help in avoiding the situation of failure. In this work, the authors have applied logistic regression, decision tree, support vector machine, linear discriminant analysis, quadratic discriminant analysis, naïve Bayes, random forest, and k‐nearest neighbour algorithms to predict the stability of the grid. The authors have used the smart grid stability dataset freely available on Kaggle to train and test the models. It has been found that a model designed using the support vector machine algorithm has given the most accurate result.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
过儿完成签到,获得积分10
刚刚
1秒前
能干的荆完成签到 ,获得积分10
1秒前
拼搏的寒凝完成签到 ,获得积分10
1秒前
桐桐应助zhouzhou采纳,获得10
2秒前
啦啦啦完成签到 ,获得积分10
2秒前
2秒前
2秒前
2秒前
3秒前
XHT发布了新的文献求助10
3秒前
香蕉觅云应助大大大骁采纳,获得10
3秒前
所所应助心行采纳,获得10
3秒前
4秒前
白小白完成签到,获得积分10
4秒前
过儿发布了新的文献求助10
4秒前
4秒前
毅诚菌发布了新的文献求助10
4秒前
毅诚菌发布了新的文献求助10
4秒前
4秒前
毅诚菌发布了新的文献求助10
5秒前
毅诚菌发布了新的文献求助10
5秒前
毅诚菌发布了新的文献求助10
5秒前
毅诚菌发布了新的文献求助10
5秒前
平常的草莓完成签到,获得积分10
5秒前
5秒前
毅诚菌发布了新的文献求助10
6秒前
Ava应助威武绝山采纳,获得10
6秒前
ssrich发布了新的文献求助10
6秒前
6秒前
cencen发布了新的文献求助10
6秒前
郎吟上邪完成签到,获得积分10
6秒前
优雅老六应助想不到哇采纳,获得10
6秒前
肖原完成签到,获得积分10
7秒前
xx发布了新的文献求助10
7秒前
7秒前
7秒前
傲娇芷雪发布了新的文献求助10
8秒前
放倒巨大豆蔓完成签到 ,获得积分10
9秒前
Lucas应助清风荷影采纳,获得10
9秒前
高分求助中
Incubation and Hatchery Performance, The Devil is in the Details 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5204680
求助须知:如何正确求助?哪些是违规求助? 4383701
关于积分的说明 13650154
捐赠科研通 4241580
什么是DOI,文献DOI怎么找? 2326956
邀请新用户注册赠送积分活动 1324605
关于科研通互助平台的介绍 1276907