已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine learning‐based model for prediction of power consumption in smart grid‐ smart way towards smart city

智能电网 计算机科学 网格 可扩展性 分布式计算 电气工程 数据库 工程类 几何学 数学
作者
Shamik Tiwari,Anurag Jain,Nada Ahmed,. Charu,Lulwah M. Alkwai,Alaa Kamal Yousif Dafhalla,Sawsan Ali Saad Hamad
出处
期刊:Expert Systems [Wiley]
卷期号:39 (5) 被引量:30
标识
DOI:10.1111/exsy.12832
摘要

Abstract A smart city is an idea that is realized by the computing of a large amount of data collected through sensors, cameras, and other electronic methods to provide services, manage resources and solve daily life problems. The transformation of the conventional grid to a smart grid is one step in the direction towards smart city realization. An electric grid is composed of control stations, generation centres, transformers, communication lines, and distributors, which helps in transferring power from the power station to domestic and commercial consumers. Present electric grids are not smart enough that they can estimate the varying power requirement of the consumer. Also, these conventional grids are not enough robust and scalable. This has become the motivation for shifting from a conventional grid to a smart grid. The smart grid is a kind of power grid, which is robust and adapts itself to the varying needs of the consumer and self‐healing in nature. In this way, the transformation from a conventional grid to a smart grid will help the government to make a smart city. The emergence of machine learning has helped in the prediction of the stability of the grid under the dynamically changing requirement of the consumer. Also, the usage of a variety of sensors will help in the collection of real‐time consumption data. Through machine learning algorithms, we can gain an insight view of the collected data. This has helped the smart grid to convert into a robust smart grid, as this will help in avoiding the situation of failure. In this work, the authors have applied logistic regression, decision tree, support vector machine, linear discriminant analysis, quadratic discriminant analysis, naïve Bayes, random forest, and k‐nearest neighbour algorithms to predict the stability of the grid. The authors have used the smart grid stability dataset freely available on Kaggle to train and test the models. It has been found that a model designed using the support vector machine algorithm has given the most accurate result.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
呆萌的鸿煊完成签到,获得积分10
1秒前
完美世界应助淡然明轩采纳,获得10
2秒前
2秒前
清一完成签到,获得积分10
2秒前
Hao完成签到,获得积分10
3秒前
可爱的函函应助Bin采纳,获得10
3秒前
www发布了新的文献求助10
4秒前
常常嘻嘻发布了新的文献求助10
7秒前
ccf完成签到 ,获得积分10
8秒前
9秒前
SciGPT应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
天天快乐应助科研通管家采纳,获得10
9秒前
wanci应助科研通管家采纳,获得10
9秒前
AN应助科研通管家采纳,获得100
9秒前
NexusExplorer应助科研通管家采纳,获得10
9秒前
9秒前
TED应助科研通管家采纳,获得10
9秒前
9秒前
轨迹应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
wanci应助科研通管家采纳,获得30
9秒前
隐形曼青应助科研通管家采纳,获得10
10秒前
10秒前
Sunday完成签到 ,获得积分10
12秒前
科研通AI6.1应助熊熊阁采纳,获得10
13秒前
13秒前
量子星尘发布了新的文献求助10
15秒前
丘比特应助chruse采纳,获得10
15秒前
liya发布了新的文献求助10
17秒前
李健应助佛光辉采纳,获得10
18秒前
18秒前
18秒前
无奈的盈发布了新的文献求助10
18秒前
20秒前
20秒前
21秒前
Groot发布了新的文献求助10
23秒前
叼着奶瓶上天完成签到,获得积分10
25秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771770
求助须知:如何正确求助?哪些是违规求助? 5593601
关于积分的说明 15428336
捐赠科研通 4905041
什么是DOI,文献DOI怎么找? 2639200
邀请新用户注册赠送积分活动 1587060
关于科研通互助平台的介绍 1541941