MBRS: Enhancing Robustness of DNN-based Watermarking by Mini-Batch of Real and Simulated JPEG Compression

计算机科学 稳健性(进化) JPEG格式 数字水印 人工智能 无损JPEG 水印 数据压缩 模式识别(心理学) 计算机视觉 嵌入 图像压缩 图像处理 图像(数学) 生物化学 基因 化学
作者
Zhaoyang Jia,Han Fang,Weiming Zhang
出处
期刊:Cornell University - arXiv 被引量:11
标识
DOI:10.1145/3474085.3475324
摘要

Based on the powerful feature extraction ability of deep learning architecture, recently, deep-learning based watermarking algorithms have been widely studied. The basic framework of such algorithm is the auto-encoder like end-to-end architecture with an encoder, a noise layer and a decoder. The key to guarantee robustness is the adversarial training with the differential noise layer. However, we found that none of the existing framework can well ensure the robustness against JPEG compression, which is non-differential but is an essential and important image processing operation. To address such limitations, we proposed a novel end-to-end training architecture, which utilizes Mini-Batch of Real and Simulated JPEG compression (MBRS) to enhance the JPEG robustness. Precisely, for different mini-batches, we randomly choose one of real JPEG, simulated JPEG and noise-free layer as the noise layer. Besides, we suggest to utilize the Squeeze-and-Excitation blocks which can learn better feature in embedding and extracting stage, and propose a "message processor" to expand the message in a more appreciate way. Meanwhile, to improve the robustness against crop attack, we propose an additive diffusion block into the network. The extensive experimental results have demonstrated the superior performance of the proposed scheme compared with the state-of-the-art algorithms. Under the JPEG compression with quality factor $Q=50$, our models achieve a bit error rate less than 0.01% for extracted messages, with PSNR larger than 36 for the encoded images, which shows the well-enhanced robustness against JPEG attack. Besides, under many other distortions such as Gaussian filter, crop, cropout and dropout, the proposed framework also obtains strong robustness. The code implemented by PyTorch is avaiable in https://github.com/jzyustc/MBRS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小白先生完成签到,获得积分10
1秒前
阿黎发布了新的文献求助10
1秒前
炎炎王其完成签到,获得积分10
1秒前
卡卡发布了新的文献求助10
1秒前
2秒前
SugarSssu发布了新的文献求助10
2秒前
陈杰完成签到,获得积分10
2秒前
优雅绮波完成签到,获得积分10
3秒前
Shen发布了新的文献求助10
3秒前
3秒前
3秒前
芋泥完成签到,获得积分10
3秒前
4秒前
4秒前
FashionBoy应助白笑石采纳,获得30
4秒前
4秒前
lfs发布了新的文献求助10
5秒前
叶世玉完成签到,获得积分10
5秒前
争当科研巨匠完成签到,获得积分10
5秒前
5秒前
5秒前
mjnrhw发布了新的文献求助10
6秒前
半夏微凉完成签到,获得积分10
6秒前
堆起的石头完成签到,获得积分10
7秒前
7秒前
7秒前
科研通AI5应助果果采纳,获得10
8秒前
Kevin发布了新的文献求助10
8秒前
yiduo完成签到 ,获得积分10
9秒前
Bruce发布了新的文献求助10
9秒前
朱大头完成签到,获得积分10
9秒前
芒果杀手发布了新的文献求助10
10秒前
於伟祺发布了新的文献求助10
10秒前
10秒前
HHHHTTTT发布了新的文献求助10
11秒前
共享精神应助李lj采纳,获得10
11秒前
11秒前
wtldkz发布了新的文献求助10
12秒前
猪猪hero发布了新的文献求助10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1050
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
2024-2030年中国聚异戊二烯橡胶行业市场现状调查及发展前景研判报告 500
Barth, Derrida and the Language of Theology 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3591848
求助须知:如何正确求助?哪些是违规求助? 3160098
关于积分的说明 9528082
捐赠科研通 2863330
什么是DOI,文献DOI怎么找? 1573455
邀请新用户注册赠送积分活动 738690
科研通“疑难数据库(出版商)”最低求助积分说明 723047