Convolutional neural network - Support vector machine based approach for classification of cyanobacteria and chlorophyta microalgae groups

支持向量机 卷积神经网络 人工智能 核(代数) 模式识别(心理学) 绿藻门 计算机科学 人工神经网络 机器学习 过程(计算) 数学 藻类 植物 生物 操作系统 组合数学
作者
Mesut Ersin Sönmez,Numan Eczacıoglu,Numan Emre Gümüş,Muhammet Fatih Aslan,Kadir Sabancı,Baran Aşıkkutlu
出处
期刊:Algal Research-Biomass Biofuels and Bioproducts [Elsevier]
卷期号:61: 102568-102568 被引量:32
标识
DOI:10.1016/j.algal.2021.102568
摘要

Microalgae are single-celled organisms that have been extensively utilized in biotechnology, pharmacology and foodstuff in recent years. The description and classification of many existing microalgae groups are carried out with classical methods in a long time and with a remarkably qualified labor force. Deep learning methods have achieved success in many fields are applied to the classification of microalga groups. In this study, Cyanobacteria and Chlorophyta microalga groups images are captured by using an inverted microscope. Data augmentation process has been carried out to increase the classification success in Convolutional Neural Network (CNN) models. The collected images are classified by employing two different methods. For the first method, classification is performed with seven different CNN models. In the second method, the Support Vector Machine (SVM) is used to increase the classification success of the AlexNet model with the lowest accuracy. For this, deep features which are extracted from the AlexNet model are classified with SVM. Four different kernel functions are used in the SVM classification process. The highest accuracy is found to be 99.66% among the different CNN models. AlexNet, which has the lowest accuracy with 98%, has reached 99.66% accuracy as a result of its application with SVM.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
莫道桑榆完成签到,获得积分10
1秒前
lieqiang发布了新的文献求助10
1秒前
Luna_aaa应助一条贤与采纳,获得10
1秒前
E1gb完成签到,获得积分10
2秒前
科研的神龙猫完成签到,获得积分10
2秒前
凌云完成签到,获得积分10
3秒前
晴空完成签到,获得积分10
3秒前
Hrentiken完成签到,获得积分10
3秒前
pengnanhao完成签到,获得积分10
4秒前
彬彬嘉完成签到,获得积分10
4秒前
小豆子完成签到,获得积分20
4秒前
4秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
单纯无声完成签到 ,获得积分10
4秒前
5秒前
GGbond完成签到,获得积分10
5秒前
sophia完成签到,获得积分10
6秒前
收手吧大哥应助一米八八采纳,获得40
6秒前
Alex发布了新的文献求助10
7秒前
Silvia完成签到,获得积分10
7秒前
一剑温柔完成签到 ,获得积分10
8秒前
linger完成签到 ,获得积分10
8秒前
有信心完成签到 ,获得积分10
8秒前
Ava应助灵光一闪采纳,获得10
8秒前
上善若水呦完成签到 ,获得积分10
8秒前
ctttt发布了新的文献求助10
9秒前
qq完成签到,获得积分10
9秒前
xiaoyuan发布了新的文献求助10
9秒前
9秒前
9秒前
无情的聋五完成签到 ,获得积分10
10秒前
CP完成签到,获得积分10
10秒前
zee完成签到,获得积分10
10秒前
11秒前
zwww完成签到 ,获得积分10
11秒前
小蘑菇应助vivre223采纳,获得10
11秒前
KIVA完成签到,获得积分10
11秒前
polymer完成签到 ,获得积分10
12秒前
鞠晓蕾完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5651684
求助须知:如何正确求助?哪些是违规求助? 4785671
关于积分的说明 15055211
捐赠科研通 4810389
什么是DOI,文献DOI怎么找? 2573087
邀请新用户注册赠送积分活动 1529005
关于科研通互助平台的介绍 1487961