Convolutional neural network - Support vector machine based approach for classification of cyanobacteria and chlorophyta microalgae groups

支持向量机 卷积神经网络 人工智能 核(代数) 模式识别(心理学) 绿藻门 计算机科学 人工神经网络 机器学习 过程(计算) 数学 藻类 植物 生物 组合数学 操作系统
作者
Mesut Ersin Sönmez,Numan Eczacıoglu,Numan Emre Gümüş,Muhammet Fatih Aslan,Kadir Sabancı,Baran Aşıkkutlu
出处
期刊:Algal Research-Biomass Biofuels and Bioproducts [Elsevier BV]
卷期号:61: 102568-102568 被引量:32
标识
DOI:10.1016/j.algal.2021.102568
摘要

Microalgae are single-celled organisms that have been extensively utilized in biotechnology, pharmacology and foodstuff in recent years. The description and classification of many existing microalgae groups are carried out with classical methods in a long time and with a remarkably qualified labor force. Deep learning methods have achieved success in many fields are applied to the classification of microalga groups. In this study, Cyanobacteria and Chlorophyta microalga groups images are captured by using an inverted microscope. Data augmentation process has been carried out to increase the classification success in Convolutional Neural Network (CNN) models. The collected images are classified by employing two different methods. For the first method, classification is performed with seven different CNN models. In the second method, the Support Vector Machine (SVM) is used to increase the classification success of the AlexNet model with the lowest accuracy. For this, deep features which are extracted from the AlexNet model are classified with SVM. Four different kernel functions are used in the SVM classification process. The highest accuracy is found to be 99.66% among the different CNN models. AlexNet, which has the lowest accuracy with 98%, has reached 99.66% accuracy as a result of its application with SVM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
wbh发布了新的文献求助10
1秒前
2秒前
3秒前
4秒前
佳里发布了新的文献求助10
6秒前
酸奶花生完成签到 ,获得积分10
6秒前
CT发布了新的文献求助10
7秒前
NexusExplorer应助11111采纳,获得10
8秒前
123完成签到,获得积分10
8秒前
12秒前
酷波er应助冷艳的姿采纳,获得10
13秒前
13秒前
小蘑菇应助缥缈冷安采纳,获得10
13秒前
ccygpp199发布了新的文献求助10
13秒前
NexusExplorer应助佳里采纳,获得10
14秒前
淡淡的向雁完成签到,获得积分10
14秒前
15秒前
15秒前
Jasper应助LJJ采纳,获得10
17秒前
小啦啦3082发布了新的文献求助10
17秒前
17秒前
18秒前
甜甜的悲完成签到,获得积分20
18秒前
今后应助wbh采纳,获得10
18秒前
19秒前
妖妖灵完成签到,获得积分20
19秒前
加油干发布了新的文献求助10
19秒前
彭于晏应助xuan采纳,获得10
19秒前
甜甜的悲发布了新的文献求助10
20秒前
gwenjing发布了新的文献求助10
21秒前
wsj发布了新的文献求助10
23秒前
23秒前
量子星尘发布了新的文献求助10
23秒前
张金蝶发布了新的文献求助10
23秒前
jinzhen发布了新的文献求助10
23秒前
文献发布了新的文献求助30
24秒前
太牛的GGB完成签到,获得积分20
24秒前
25秒前
穿裤子的云完成签到,获得积分10
26秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989334
求助须知:如何正确求助?哪些是违规求助? 3531428
关于积分的说明 11253936
捐赠科研通 3270119
什么是DOI,文献DOI怎么找? 1804887
邀请新用户注册赠送积分活动 882087
科研通“疑难数据库(出版商)”最低求助积分说明 809173