Multi-physics modeling of thermochemical heat storage with enhance heat transfer

放热反应 传热 热力学 热导率 材料科学 热能储存 热交换器 放热过程 储能 机械 化学 复合材料 物理 物理化学 吸附 功率(物理)
作者
Tao Shi,Huijin Xu,Cong Qi,Biao Lei,Yuting Wu,Changying Zhao
出处
期刊:Applied Thermal Engineering [Elsevier]
卷期号:198: 117508-117508 被引量:32
标识
DOI:10.1016/j.applthermaleng.2021.117508
摘要

Thermochemical heat storage technology is an important component in energy system, and plays a key role in the balance of energy supply and demand. A multi-physics model is constructed to study the hydration process in a tubular reactor, including fluid flow, heat transfer and reaction. Variations of temperature and conversion of CaO are discussed in detailed to reveal exothermic reaction characteristics. Besides, effects of different reaction conditions during hydration are studied, such as porosity, temperature, pressure, flow rate and thermal conductivity. It is found that the low thermal conductivity of solid-phase is the most important factor which limits the reaction. The heat transfer process can be greatly promoted by adding fins, due to the high heat conductivity. However, the relationship between the reactor structure and the performance of the thermochemical heat storage is not quantitatively clear. The present study aims to investigate the impact of the arrangement of fins on the hydration process. Finally, different types of fins with high thermal conductivity are employed in the reactor. Attributing to the fact that the equilibrium temperature is affected by the vapor pressure, thermochemical reactors with different fin configurations have different flow characteristics and pressure drops, leading to different reaction characteristics. It is shown that the exothermic time was reduced to 84.32% (axial fins), 89.97% (radial fins), and 88.71% (spiral fins) of the original, respectively. This study can reveal the coupling relations of multi-physics fields in thermochemical heat storage, and provide theoretical basis for the design of thermochemical heat storage reactors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助俭朴的一曲采纳,获得10
刚刚
刚刚
2秒前
隐形曼青应助咯噔采纳,获得10
3秒前
俏皮芹发布了新的文献求助10
3秒前
深情海亦发布了新的文献求助30
4秒前
4秒前
5秒前
打打应助zbz12138采纳,获得10
8秒前
monned完成签到,获得积分10
8秒前
崩溃发布了新的文献求助10
9秒前
柏如柏发布了新的文献求助10
10秒前
10秒前
科研小白发布了新的文献求助10
10秒前
11秒前
无花果应助key采纳,获得10
11秒前
赫如冰发布了新的文献求助10
13秒前
甜蜜雅彤应助随波逐流采纳,获得10
15秒前
南风发布了新的文献求助10
17秒前
Manzia完成签到,获得积分10
21秒前
深情海亦完成签到,获得积分10
22秒前
23秒前
pyhua完成签到,获得积分10
23秒前
24秒前
25秒前
上官若男应助hay采纳,获得10
26秒前
27秒前
28秒前
key发布了新的文献求助10
28秒前
30秒前
30秒前
30秒前
寻雪完成签到,获得积分20
31秒前
乖巧的菜猪完成签到,获得积分10
31秒前
w_应助崩溃采纳,获得10
31秒前
32秒前
33秒前
脑洞疼应助However采纳,获得10
33秒前
33秒前
南风发布了新的文献求助10
33秒前
高分求助中
Sustainability in Tides Chemistry 2000
The ACS Guide to Scholarly Communication 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Pharmacogenomics: Applications to Patient Care, Third Edition 800
Gerard de Lairesse : an artist between stage and studio 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3076389
求助须知:如何正确求助?哪些是违规求助? 2729242
关于积分的说明 7508108
捐赠科研通 2377477
什么是DOI,文献DOI怎么找? 1260632
科研通“疑难数据库(出版商)”最低求助积分说明 611101
版权声明 597194