Analysis of Bank Leverage via Dynamical Systems and Deep Neural Networks

杠杆(统计) 异方差 计量经济学 文件夹 动力系统理论 数学 计算机科学 应用数学 财务 经济 统计 物理 量子力学
作者
Fabrizio Lillo,Giulia Livieri,Stefano Marmi,Anton V. Solomko,Sandro Vaienti
出处
期刊:Siam Journal on Financial Mathematics [Society for Industrial and Applied Mathematics]
卷期号:14 (2): 598-643
标识
DOI:10.1137/21m1412517
摘要

We consider a model of a simple financial system consisting of a leveraged investor that invests in a risky asset and manages risk by using value-at-risk (VaR). The VaR is estimated by using past data via an adaptive expectation scheme. We show that the leverage dynamics can be described by a dynamical system of slow-fast type associated with a unimodal map on with an additive heteroscedastic noise whose variance is related to the portfolio rebalancing frequency to target leverage. In absence of noise the model is purely deterministic and the parameter space splits into two regions: (i) a region with a globally attracting fixed point or a 2-cycle; (ii) a dynamical core region, where the map could exhibit chaotic behavior. Whenever the model is randomly perturbed, we prove the existence of a unique stationary density with bounded variation, the stochastic stability of the process, and the almost certain existence and continuity of the Lyapunov exponent for the stationary measure. We then use deep neural networks to estimate map parameters from a short time series. Using this method, we estimate the model in a large dataset of US commercial banks over the period 2001–2014. We find that the parameters of a substantial fraction of banks lie in the dynamical core, and their leverage time series are consistent with a chaotic behavior. We also present evidence that the time series of the leverage of large banks tend to exhibit chaoticity more frequently than those of small banks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
John发布了新的文献求助10
刚刚
刚刚
好好学习发布了新的文献求助10
刚刚
Keven发布了新的文献求助10
1秒前
Itsdami完成签到 ,获得积分10
1秒前
充电宝应助yyauthor采纳,获得10
1秒前
3秒前
YHX发布了新的文献求助10
3秒前
naplzp完成签到,获得积分10
3秒前
所所应助孙萌萌采纳,获得10
5秒前
一自文又欠完成签到 ,获得积分10
5秒前
木柟完成签到,获得积分10
5秒前
早稻人发布了新的文献求助10
5秒前
6秒前
wl9529完成签到,获得积分20
6秒前
6秒前
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
无极微光应助科研通管家采纳,获得40
7秒前
充电宝应助科研通管家采纳,获得10
7秒前
ZeKaWa应助科研通管家采纳,获得10
7秒前
7秒前
超级幼旋应助科研通管家采纳,获得10
7秒前
爆米花应助科研通管家采纳,获得10
7秒前
wanci应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
8秒前
ZeKaWa应助科研通管家采纳,获得10
8秒前
李爱国应助科研通管家采纳,获得10
8秒前
炙热尔烟完成签到,获得积分10
8秒前
8秒前
genomed应助科研通管家采纳,获得30
8秒前
香蕉觅云应助科研通管家采纳,获得10
8秒前
8秒前
无极微光应助科研通管家采纳,获得20
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
酷波er应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
ss13l完成签到,获得积分0
9秒前
老福贵儿应助科研通管家采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
Improving Teacher Morale and Motivation 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5557012
求助须知:如何正确求助?哪些是违规求助? 4642238
关于积分的说明 14667070
捐赠科研通 4583696
什么是DOI,文献DOI怎么找? 2514330
邀请新用户注册赠送积分活动 1488678
关于科研通互助平台的介绍 1459324