Analysis of Bank Leverage via Dynamical Systems and Deep Neural Networks

杠杆(统计) 异方差 计量经济学 文件夹 动力系统理论 数学 计算机科学 应用数学 财务 经济 统计 物理 量子力学
作者
Fabrizio Lillo,Giulia Livieri,Stefano Marmi,Anton V. Solomko,Sandro Vaienti
出处
期刊:Siam Journal on Financial Mathematics [Society for Industrial and Applied Mathematics]
卷期号:14 (2): 598-643
标识
DOI:10.1137/21m1412517
摘要

We consider a model of a simple financial system consisting of a leveraged investor that invests in a risky asset and manages risk by using value-at-risk (VaR). The VaR is estimated by using past data via an adaptive expectation scheme. We show that the leverage dynamics can be described by a dynamical system of slow-fast type associated with a unimodal map on with an additive heteroscedastic noise whose variance is related to the portfolio rebalancing frequency to target leverage. In absence of noise the model is purely deterministic and the parameter space splits into two regions: (i) a region with a globally attracting fixed point or a 2-cycle; (ii) a dynamical core region, where the map could exhibit chaotic behavior. Whenever the model is randomly perturbed, we prove the existence of a unique stationary density with bounded variation, the stochastic stability of the process, and the almost certain existence and continuity of the Lyapunov exponent for the stationary measure. We then use deep neural networks to estimate map parameters from a short time series. Using this method, we estimate the model in a large dataset of US commercial banks over the period 2001–2014. We find that the parameters of a substantial fraction of banks lie in the dynamical core, and their leverage time series are consistent with a chaotic behavior. We also present evidence that the time series of the leverage of large banks tend to exhibit chaoticity more frequently than those of small banks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ding应助Xixia采纳,获得10
刚刚
1秒前
小航航013完成签到,获得积分10
1秒前
碎月发布了新的文献求助10
1秒前
水木年华完成签到,获得积分10
1秒前
123完成签到,获得积分10
1秒前
23333发布了新的文献求助10
2秒前
3秒前
yoyo完成签到,获得积分10
4秒前
科研通AI6应助dandan采纳,获得10
5秒前
mars发布了新的文献求助10
5秒前
金桔儿发布了新的文献求助10
6秒前
6秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
万能图书馆应助rr采纳,获得10
10秒前
万能图书馆应助碎月采纳,获得10
10秒前
hony发布了新的文献求助10
10秒前
JZ发布了新的文献求助10
11秒前
Tangshy完成签到,获得积分10
11秒前
1234567发布了新的文献求助10
13秒前
23333完成签到,获得积分10
13秒前
天天快乐应助金桔儿采纳,获得10
14秒前
14秒前
李健应助SYH采纳,获得30
15秒前
Pendulium发布了新的文献求助10
16秒前
16秒前
Orange应助兔子采纳,获得10
17秒前
18秒前
科研通AI6应助一一采纳,获得10
18秒前
北开水发布了新的文献求助30
19秒前
20秒前
LL完成签到,获得积分10
20秒前
20秒前
Sunende发布了新的文献求助10
20秒前
大个应助体贴的语柔采纳,获得10
20秒前
土土完成签到 ,获得积分10
21秒前
金桔儿完成签到,获得积分20
21秒前
黄小小完成签到,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
Sport, Social Media, and Digital Technology: Sociological Approaches 650
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5593859
求助须知:如何正确求助?哪些是违规求助? 4679724
关于积分的说明 14811189
捐赠科研通 4645218
什么是DOI,文献DOI怎么找? 2534702
邀请新用户注册赠送积分活动 1502747
关于科研通互助平台的介绍 1469430