Analysis of Bank Leverage via Dynamical Systems and Deep Neural Networks

杠杆(统计) 异方差 计量经济学 文件夹 动力系统理论 数学 计算机科学 应用数学 财务 经济 统计 物理 量子力学
作者
Fabrizio Lillo,Giulia Livieri,Stefano Marmi,Anton V. Solomko,Sandro Vaienti
出处
期刊:Siam Journal on Financial Mathematics [Society for Industrial and Applied Mathematics]
卷期号:14 (2): 598-643
标识
DOI:10.1137/21m1412517
摘要

We consider a model of a simple financial system consisting of a leveraged investor that invests in a risky asset and manages risk by using value-at-risk (VaR). The VaR is estimated by using past data via an adaptive expectation scheme. We show that the leverage dynamics can be described by a dynamical system of slow-fast type associated with a unimodal map on with an additive heteroscedastic noise whose variance is related to the portfolio rebalancing frequency to target leverage. In absence of noise the model is purely deterministic and the parameter space splits into two regions: (i) a region with a globally attracting fixed point or a 2-cycle; (ii) a dynamical core region, where the map could exhibit chaotic behavior. Whenever the model is randomly perturbed, we prove the existence of a unique stationary density with bounded variation, the stochastic stability of the process, and the almost certain existence and continuity of the Lyapunov exponent for the stationary measure. We then use deep neural networks to estimate map parameters from a short time series. Using this method, we estimate the model in a large dataset of US commercial banks over the period 2001–2014. We find that the parameters of a substantial fraction of banks lie in the dynamical core, and their leverage time series are consistent with a chaotic behavior. We also present evidence that the time series of the leverage of large banks tend to exhibit chaoticity more frequently than those of small banks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lesyeuxdexx完成签到 ,获得积分10
1秒前
2秒前
程琳完成签到,获得积分20
3秒前
4秒前
卓哥发布了新的文献求助10
4秒前
科研通AI5应助sansan采纳,获得10
5秒前
5秒前
5秒前
脑洞疼应助杰森斯坦虎采纳,获得10
5秒前
7秒前
8秒前
研友_QQC完成签到,获得积分10
8秒前
NeuroWhite完成签到,获得积分10
8秒前
8秒前
搜索v完成签到,获得积分10
9秒前
liuchuck完成签到 ,获得积分10
9秒前
9秒前
9秒前
猫独秀完成签到,获得积分10
9秒前
11秒前
buno应助yuefeng采纳,获得10
11秒前
yiming完成签到,获得积分10
11秒前
落落发布了新的文献求助10
12秒前
清秋若月完成签到 ,获得积分10
12秒前
12秒前
呵呵呵呵完成签到,获得积分10
13秒前
13秒前
远方发布了新的文献求助10
14秒前
zxc111关注了科研通微信公众号
14秒前
15秒前
nanhe698发布了新的文献求助10
15秒前
Huang完成签到,获得积分10
15秒前
碳土不凡完成签到 ,获得积分10
16秒前
16秒前
淡淡采白发布了新的文献求助10
17秒前
17秒前
18秒前
Akim应助dingdong采纳,获得10
18秒前
18秒前
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808