A Dem Model to Predict and Correct Spreader Shear-Induced Part Deformation in Binder Jet Additive Manufacturing

材料科学 剪切(物理) 剪切(地质) 复合材料 变形(气象学) 融合 流变学 语言学 哲学
作者
Prashant Desai,C. III
标识
DOI:10.23967/wccm-eccomas.2020.012
摘要

Powder bed additive manufacturing (AM) is comprised of two repetitive steps: spreading of powder and selective fusing or binding the spread layer. Powder-bed AM can be sub-categorized as fusion-based where electron beams or laser beams are used to fuse the spread powder layer and binder-based where a liquid binder is used to bind the spread layer at areas specified by the governing CAD model. The latter process, commonly referred to as binder jet additive manufacturing (BJAM), outperforms fusion-based methods with respect to cost, build time, and material suitability; however, the parts are prone to shear-induced deformation during the powder spreading stage. Unlike fusionbased AM, the strength of BJAM parts is not fully developed until sintering and infiltration during postprocessing. This results in BJAM parts being more susceptible to deformation or even breakage due to the shearing action of the spreader. This shear-induced deformation can affect the precision and thereby performance of 3D printed parts. The binding step in BJAM is a complex function of binder viscosity, density, droplet size, impact speed, and drying time. The spreading step is a complex function of spreader speed and spreader shape, topography of spread and bound layer, and the rheology of the AM powder. This study presents a first-order model to simulate BJAM using a weak concrete-like, non-local, multilayer bonded DEM model. The DEM model has been parallelized using the massive parallelism offered by GPUs. An industry-grade metal powder is used to print physical cuboids at varying spreader speeds. The model is qualitatively verified against experiments on a real 3D printer. The model can be used to provide layer-wise spreading process control to minimize spreader shear-induced deformations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
方大完成签到,获得积分10
刚刚
沉静小萱完成签到 ,获得积分10
1秒前
iWatchTheMoon发布了新的文献求助30
2秒前
精炼猫薄荷完成签到,获得积分10
2秒前
asdadadad完成签到,获得积分10
3秒前
3秒前
4秒前
黑咚咚完成签到 ,获得积分10
4秒前
畅快的荟发布了新的文献求助10
5秒前
5秒前
二七完成签到 ,获得积分10
6秒前
6秒前
AaronW应助大林采纳,获得10
7秒前
小伙子发布了新的文献求助30
7秒前
8秒前
慕明花开完成签到,获得积分20
8秒前
周宸完成签到,获得积分10
8秒前
9秒前
www1234发布了新的文献求助10
9秒前
爱笑水壶完成签到,获得积分10
9秒前
iui飞关注了科研通微信公众号
10秒前
归诚发布了新的文献求助10
12秒前
cai完成签到,获得积分10
12秒前
13秒前
JamesTYD发布了新的文献求助20
13秒前
科研通AI2S应助redred采纳,获得10
14秒前
小北发布了新的文献求助10
14秒前
14秒前
15秒前
Jessie完成签到,获得积分10
16秒前
共享精神应助Cc采纳,获得10
16秒前
16秒前
沉默烨霖完成签到,获得积分10
17秒前
18秒前
思源应助舒适的平蓝采纳,获得10
19秒前
BaiX发布了新的文献求助10
20秒前
Dodobirdzhb发布了新的文献求助10
20秒前
沉默烨霖发布了新的文献求助10
21秒前
HEIKU应助不做花瓶好多年采纳,获得20
21秒前
21秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160487
求助须知:如何正确求助?哪些是违规求助? 2811659
关于积分的说明 7892950
捐赠科研通 2470589
什么是DOI,文献DOI怎么找? 1315639
科研通“疑难数据库(出版商)”最低求助积分说明 630910
版权声明 602042