溶解
材料科学
水溶液
电池(电)
化学工程
歧化
沉积(地质)
氧化还原
插层(化学)
无机化学
电化学
电解质
电极
阴极
化学
冶金
催化作用
物理化学
生物化学
古生物学
功率(物理)
物理
量子力学
沉积物
工程类
生物
作者
Xiaofan Shen,Xiaona Wang,Yurong Zhou,Yanhong Shi,Liming Zhao,Hehua Jin,Jiangtao Di,Qingwen Li
标识
DOI:10.1002/adfm.202101579
摘要
Abstract Rechargeable Zn‐MnO 2 batteries are boosted by the reversible intercalation reactions in mild aqueous electrolytes, but they still suffer from cathode degradation. Herein, Zn‐MnO 2 batteries with high durability and high energy density are achieved by supplementing MnO 2 deposition and dissolution in a mild aqueous electrolyte. The main finding is that adjusting Mn 2+ concentration to a critical range enables a reversible MnO 2 /Mn 2+ redox conversion without the involvement of oxygen evolution. This can recycle the by‐products from MnOOH disproportionation (MnOOH → MnO 2 + Mn 2+ ), resulting in a battery with extremely high durability (16 000 cycles without obvious capacity fading), high energy density (602 Wh kg −1 based on the active mass of the cathode), and high‐rate capacity (430 mAh g −1 at 19.5 A g −1 ). The utilization of a 3D carbon nanotube foam skeleton can accommodate the volume change during MnO 2 deposition/dissolution and provide paths for efficient charge and mass transport. This work provides a feasible way to push the development of Zn‐MnO 2 batteries in mild aqueous electrolytes.
科研通智能强力驱动
Strongly Powered by AbleSci AI