亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Using deep learning to predict microvascular invasion in hepatocellular carcinoma based on dynamic contrast-enhanced MRI combined with clinical parameters

肝细胞癌 医学 磁共振成像 队列 动态对比度 放射科 总体生存率 内科学 肝切除术 肿瘤科 胃肠病学 外科 切除术
作者
Danjun Song,Yueyue Wang,Wentao Wang,Yining Wang,Jia‐Bin Cai,Kai Zhu,Minzhi Lv,Qiang Gao,Jian Zhou,Jia Fan,Shengxiang Rao,Manning Wang,Xiaoying Wang
出处
期刊:Journal of Cancer Research and Clinical Oncology [Springer Nature]
卷期号:147 (12): 3757-3767 被引量:61
标识
DOI:10.1007/s00432-021-03617-3
摘要

Microvascular invasion (MVI) is a critical determinant of the early recurrence and poor prognosis of patients with hepatocellular carcinoma (HCC). Prediction of MVI status is clinically significant for the decision of treatment strategies and the assessment of patient's prognosis. A deep learning (DL) model was developed to predict the MVI status and grade in HCC patients based on preoperative dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and clinical parameters.HCC patients with pathologically confirmed MVI status from January to December 2016 were enrolled and preoperative DCE-MRI of these patients were collected in this study. Then they were randomly divided into the training and testing cohorts. A DL model with eight conventional neural network (CNN) branches for eight MRI sequences was built to predict the presence of MVI, and further combined with clinical parameters for better prediction.Among 601 HCC patients, 376 patients were pathologically MVI absent, and 225 patients were MVI present. To predict the presence of MVI, the DL model based only on images achieved an area under curve (AUC) of 0.915 in the testing cohort as compared to the radiomics model with an AUC of 0.731. The DL combined with clinical parameters (DLC) model yielded the best predictive performance with an AUC of 0.931. For the MVI-grade stratification, the DLC models achieved an overall accuracy of 0.793. Survival analysis demonstrated that the patients with DLC-predicted MVI status were associated with the poor overall survival (OS) and recurrence-free survival (RFS). Further investigation showed that hepatectomy with the wide resection margin contributes to better OS and RFS in the DLC-predicted MVI present patients.The proposed DLC model can provide a non-invasive approach to evaluate MVI before surgery, which can help surgeons make decisions of surgical strategies and assess patient's prognosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研垃圾完成签到,获得积分20
21秒前
30秒前
科研垃圾发布了新的文献求助10
35秒前
日渐消瘦完成签到 ,获得积分10
39秒前
wanci应助科研通管家采纳,获得30
56秒前
妄自发布了新的文献求助10
1分钟前
妄自完成签到,获得积分10
1分钟前
迅速的蜡烛完成签到 ,获得积分10
1分钟前
萝卜丁完成签到 ,获得积分10
1分钟前
wanci应助科研通管家采纳,获得10
2分钟前
fantw完成签到,获得积分20
3分钟前
bkagyin应助yff采纳,获得30
3分钟前
4分钟前
yff发布了新的文献求助30
4分钟前
科研通AI2S应助yff采纳,获得10
4分钟前
sofardli发布了新的文献求助10
4分钟前
科研通AI2S应助NCL采纳,获得10
4分钟前
从容芮应助科研通管家采纳,获得60
4分钟前
招水若离完成签到,获得积分10
5分钟前
sofardli完成签到,获得积分10
5分钟前
5分钟前
wtsow完成签到,获得积分0
6分钟前
Shandongdaxiu完成签到 ,获得积分10
6分钟前
依然灬聆听完成签到,获得积分10
6分钟前
杨明明完成签到,获得积分20
7分钟前
小杜发布了新的文献求助10
9分钟前
jason完成签到 ,获得积分10
9分钟前
在水一方应助小杜采纳,获得10
9分钟前
10分钟前
爱静静举报小趴蔡求助涉嫌违规
11分钟前
李剑鸿发布了新的文献求助30
11分钟前
李剑鸿发布了新的文献求助30
11分钟前
Hello应助Grayball采纳,获得30
12分钟前
12分钟前
12分钟前
Grayball发布了新的文献求助30
12分钟前
13分钟前
Fox完成签到 ,获得积分10
14分钟前
Magali发布了新的文献求助10
14分钟前
Legoxpy完成签到,获得积分20
14分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
叶剑英与华南分局档案史料 500
Foreign Policy of the French Second Empire: A Bibliography 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146739
求助须知:如何正确求助?哪些是违规求助? 2798045
关于积分的说明 7826565
捐赠科研通 2454548
什么是DOI,文献DOI怎么找? 1306376
科研通“疑难数据库(出版商)”最低求助积分说明 627708
版权声明 601527