Micromagnetic study for optimum performance of isotropic Nd2Fe14B/α-Fe nanocomposite bulk magnets

矫顽力 剩磁 粒度 材料科学 磁晶各向异性 磁铁 纳米复合材料 各向异性 微观结构 几何学 凝聚态物理 磁各向异性 复合材料 磁化 物理 磁场 数学 光学 量子力学
作者
Chol-Song Kim,Shilei Ding,O. Yongju,Liang Zha,Chao Yun,Wei Yang,Jingzhi Han,S. Q. Liu,Honglin Du,C S Wang,Jinbo Yang
出处
期刊:Journal of Physics D [IOP Publishing]
卷期号:54 (24): 245003-245003 被引量:4
标识
DOI:10.1088/1361-6463/abedfc
摘要

Abstract The nanocomposite magnets attract great interest in the study of high-performance magnets. Here, the micromagnetic simulations have been performed to investigate the effects of various microstructural factors such as grain geometry, grain size, and volume fraction on the performance of a soft-in-hard-matrix nanostructured Nd 2 Fe 14 B/ α -Fe isotropic magnet. It is found that there is very little dependence of remanence on the geometry of the soft phase. The coercivity decreases with increasing the soft grain size, whereas it has a variation tendency depending on the size of hard grain size. In contrast to a significant role of soft-sphere geometry in anisotropic nanocomposites (Skomski et al 2013 IEEE Trans. Magn . 49 3215), the energy product of the soft-sphere system simulated here is slightly increased ( 8 kJ m −3 ), compared with that of the soft-cylinder system. In the meantime, a significant enhancement in energy product with increasing the soft grain size is observed only when the hard grain size is less than 15 nm. Our simulation predicts the highest energy product of 347 kJ m −3 with a hard grain size of 5 nm and a soft-sphere size of 12.4 nm (30 vol% of the soft phase). It is shown that the effective magnetocrystalline anisotropy is responsible for the variation in coercivity, based on its quantitative evaluation for the soft-sphere system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
堀江真夏完成签到 ,获得积分10
刚刚
刚刚
魏淑辉完成签到 ,获得积分10
刚刚
小郑开心努力完成签到,获得积分10
刚刚
董炜琦完成签到,获得积分10
1秒前
吉吉国王完成签到,获得积分20
1秒前
科目三应助叶子采纳,获得10
2秒前
直率芮完成签到,获得积分10
2秒前
疯狂的科研人完成签到,获得积分10
3秒前
LinJN完成签到,获得积分10
3秒前
3秒前
小灰灰发布了新的文献求助10
4秒前
莫0817完成签到,获得积分10
4秒前
LGH完成签到 ,获得积分10
4秒前
xiaoyuan完成签到,获得积分10
5秒前
yuzhi完成签到,获得积分10
5秒前
蔺契发布了新的文献求助10
5秒前
俭朴羊青完成签到,获得积分10
5秒前
李爱国应助葳蕤苍生采纳,获得10
6秒前
wss发布了新的文献求助10
6秒前
张振宇完成签到 ,获得积分10
7秒前
7秒前
LJHUA完成签到,获得积分10
7秒前
chekd完成签到,获得积分10
8秒前
8秒前
Lemon77777发布了新的文献求助10
8秒前
刘泽远完成签到,获得积分10
8秒前
8秒前
Judy完成签到 ,获得积分10
10秒前
icerell完成签到,获得积分10
10秒前
Lshyong完成签到 ,获得积分10
10秒前
云游归尘完成签到 ,获得积分10
11秒前
11秒前
萧西关注了科研通微信公众号
12秒前
lalala发布了新的文献求助10
12秒前
13秒前
Lucas应助hailiangzheng采纳,获得10
13秒前
友好傲白完成签到,获得积分10
14秒前
郁金香完成签到,获得积分10
14秒前
14秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134083
求助须知:如何正确求助?哪些是违规求助? 2784918
关于积分的说明 7769341
捐赠科研通 2440444
什么是DOI,文献DOI怎么找? 1297415
科研通“疑难数据库(出版商)”最低求助积分说明 624959
版权声明 600792