An efficient differential evolution algorithm based on orthogonal learning and elites local search mechanisms for numerical optimization

早熟收敛 差异进化 计算机科学 水准点(测量) 人口 趋同(经济学) 算法 进化算法 数学优化 局部搜索(优化) 全局优化 局部最优 人工智能 机器学习 数学 粒子群优化 社会学 人口学 经济 地理 经济增长 大地测量学
作者
Chunlei Li,Libao Deng,Liyan Qiao,Lili Zhang
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:235: 107636-107636 被引量:26
标识
DOI:10.1016/j.knosys.2021.107636
摘要

Differential evolution (DE) is an efficient stochastic algorithm for solving global numerical optimization problems. To effectively relieve the stagnation and premature convergence problems in DE, this paper presents an efficient DE variant, abbreviated as OLELS-DE, by designing orthogonal learning and elites local search mechanisms. More specifically, the stagnation or premature convergence phenomenon will be detected by monitoring the best individual's update condition during the evolution, then a population diversity estimation technique is utilized to distinguish between these two conditions empirically. To recover the population's evolution vitality according to the classification results, the enhanced orthogonal learning scheme is employed by selecting two different groups of individuals for constructing the orthogonal experimental design procedure. Moreover, the elites local search method is developed by selecting several well-performing elite individuals based on the Gaussian distribution model to further assist the former orthogonal learning mechanism. This scheme is designed to enhance the exploitation ability by searching the regions around elite individuals. The parameters and strategies in above two mechanisms are designed on the expectation of balancing the local exploitation and global exploration capabilities. The optimization performance of proposed OLELS-DE algorithm is evaluated based on 30 benchmark functions from CEC2014 test suite and is compared with eight state-of-the-art DE variants. As it was anticipated, the incorporation of orthogonal learning and elites local search mechanisms helps OLELS-DE have significantly better or at least comparable performance to the adopted DE competitors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助ioei采纳,获得10
刚刚
LI电池发布了新的文献求助10
刚刚
sunflower完成签到 ,获得积分10
刚刚
1秒前
愤怒的鲨鱼完成签到,获得积分10
1秒前
十四发布了新的文献求助10
1秒前
tcf应助wu采纳,获得30
1秒前
Riggle G完成签到,获得积分10
1秒前
2秒前
闭眼玩手机完成签到,获得积分10
2秒前
十七发布了新的文献求助30
2秒前
memedaaaah发布了新的文献求助10
2秒前
Liu完成签到,获得积分10
2秒前
香蕉觅云应助刘润欣采纳,获得10
3秒前
xinzhongchen1完成签到,获得积分10
3秒前
CodeCraft应助weixiaosi采纳,获得10
3秒前
阿发发布了新的文献求助10
3秒前
刘放发布了新的文献求助10
4秒前
ASHUN完成签到 ,获得积分10
4秒前
大模型应助zxcvbnm采纳,获得10
4秒前
传奇3应助zxcvbnm采纳,获得10
5秒前
Spencer完成签到,获得积分10
5秒前
NN应助luogan采纳,获得10
5秒前
可爱的函函应助Zoe采纳,获得10
5秒前
cai发布了新的文献求助10
5秒前
hhh完成签到 ,获得积分10
5秒前
zhui发布了新的文献求助10
6秒前
zzzzzz发布了新的文献求助10
6秒前
nanami发布了新的文献求助10
6秒前
微笑的语芙完成签到,获得积分10
7秒前
7秒前
共享精神应助梦梦采纳,获得10
7秒前
雲樂完成签到 ,获得积分10
7秒前
zw完成签到,获得积分20
7秒前
不善良完成签到 ,获得积分10
8秒前
ding应助han采纳,获得10
8秒前
9秒前
CipherSage应助Tammy采纳,获得10
9秒前
研友_Zl1Da8完成签到,获得积分10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Extreme ultraviolet pellicle cooling by hydrogen gas flow (Conference Presentation) 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5176194
求助须知:如何正确求助?哪些是违规求助? 4365180
关于积分的说明 13590723
捐赠科研通 4214765
什么是DOI,文献DOI怎么找? 2311684
邀请新用户注册赠送积分活动 1310608
关于科研通互助平台的介绍 1258637