An efficient differential evolution algorithm based on orthogonal learning and elites local search mechanisms for numerical optimization

早熟收敛 差异进化 计算机科学 水准点(测量) 人口 趋同(经济学) 算法 进化算法 数学优化 局部搜索(优化) 全局优化 局部最优 人工智能 机器学习 数学 粒子群优化 社会学 人口学 经济 经济增长 地理 大地测量学
作者
Chunlei Li,Libao Deng,Liyan Qiao,Lili Zhang
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:235: 107636-107636 被引量:20
标识
DOI:10.1016/j.knosys.2021.107636
摘要

Differential evolution (DE) is an efficient stochastic algorithm for solving global numerical optimization problems. To effectively relieve the stagnation and premature convergence problems in DE, this paper presents an efficient DE variant, abbreviated as OLELS-DE, by designing orthogonal learning and elites local search mechanisms. More specifically, the stagnation or premature convergence phenomenon will be detected by monitoring the best individual's update condition during the evolution, then a population diversity estimation technique is utilized to distinguish between these two conditions empirically. To recover the population's evolution vitality according to the classification results, the enhanced orthogonal learning scheme is employed by selecting two different groups of individuals for constructing the orthogonal experimental design procedure. Moreover, the elites local search method is developed by selecting several well-performing elite individuals based on the Gaussian distribution model to further assist the former orthogonal learning mechanism. This scheme is designed to enhance the exploitation ability by searching the regions around elite individuals. The parameters and strategies in above two mechanisms are designed on the expectation of balancing the local exploitation and global exploration capabilities. The optimization performance of proposed OLELS-DE algorithm is evaluated based on 30 benchmark functions from CEC2014 test suite and is compared with eight state-of-the-art DE variants. As it was anticipated, the incorporation of orthogonal learning and elites local search mechanisms helps OLELS-DE have significantly better or at least comparable performance to the adopted DE competitors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
blowup401发布了新的文献求助30
刚刚
1秒前
1秒前
3秒前
非常可爱完成签到,获得积分10
3秒前
3秒前
呢款完成签到,获得积分10
3秒前
李爱国应助半糖采纳,获得10
4秒前
5秒前
5秒前
落寞的代萱完成签到,获得积分10
6秒前
7秒前
Sky发布了新的文献求助10
7秒前
缥缈的戒指关注了科研通微信公众号
8秒前
hhh发布了新的文献求助10
8秒前
9秒前
何何发布了新的文献求助30
9秒前
趁微风不躁完成签到,获得积分10
9秒前
皮崇知发布了新的文献求助10
10秒前
七个完成签到 ,获得积分10
10秒前
10秒前
11秒前
silentJeremy发布了新的文献求助10
11秒前
斯文远望应助滕擎采纳,获得20
11秒前
彭于彦祖应助momo采纳,获得10
11秒前
FashionBoy应助儒雅HR采纳,获得10
12秒前
laber给Ma的求助进行了留言
13秒前
13秒前
bkagyin应助wu采纳,获得10
13秒前
夕阳殆晖完成签到,获得积分10
13秒前
liuyan0316发布了新的文献求助10
13秒前
笨笨垣完成签到,获得积分20
14秒前
15秒前
香香香发布了新的文献求助10
15秒前
夕阳殆晖发布了新的文献求助10
16秒前
纸包鱼发布了新的文献求助10
16秒前
非常可爱发布了新的文献求助10
17秒前
Maestro_S应助wang采纳,获得30
17秒前
笨笨垣发布了新的文献求助10
18秒前
18秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3669378
求助须知:如何正确求助?哪些是违规求助? 3227099
关于积分的说明 9773513
捐赠科研通 2937108
什么是DOI,文献DOI怎么找? 1609144
邀请新用户注册赠送积分活动 760121
科研通“疑难数据库(出版商)”最低求助积分说明 735748