亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An efficient differential evolution algorithm based on orthogonal learning and elites local search mechanisms for numerical optimization

早熟收敛 差异进化 计算机科学 水准点(测量) 人口 趋同(经济学) 算法 进化算法 数学优化 局部搜索(优化) 全局优化 局部最优 人工智能 机器学习 数学 粒子群优化 社会学 人口学 经济 地理 经济增长 大地测量学
作者
Chunlei Li,Libao Deng,Liyan Qiao,Lili Zhang
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:235: 107636-107636 被引量:26
标识
DOI:10.1016/j.knosys.2021.107636
摘要

Differential evolution (DE) is an efficient stochastic algorithm for solving global numerical optimization problems. To effectively relieve the stagnation and premature convergence problems in DE, this paper presents an efficient DE variant, abbreviated as OLELS-DE, by designing orthogonal learning and elites local search mechanisms. More specifically, the stagnation or premature convergence phenomenon will be detected by monitoring the best individual's update condition during the evolution, then a population diversity estimation technique is utilized to distinguish between these two conditions empirically. To recover the population's evolution vitality according to the classification results, the enhanced orthogonal learning scheme is employed by selecting two different groups of individuals for constructing the orthogonal experimental design procedure. Moreover, the elites local search method is developed by selecting several well-performing elite individuals based on the Gaussian distribution model to further assist the former orthogonal learning mechanism. This scheme is designed to enhance the exploitation ability by searching the regions around elite individuals. The parameters and strategies in above two mechanisms are designed on the expectation of balancing the local exploitation and global exploration capabilities. The optimization performance of proposed OLELS-DE algorithm is evaluated based on 30 benchmark functions from CEC2014 test suite and is compared with eight state-of-the-art DE variants. As it was anticipated, the incorporation of orthogonal learning and elites local search mechanisms helps OLELS-DE have significantly better or at least comparable performance to the adopted DE competitors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
23秒前
小田完成签到 ,获得积分10
24秒前
Criminology34应助科研通管家采纳,获得30
26秒前
共享精神应助科研通管家采纳,获得20
26秒前
搜集达人应助科研通管家采纳,获得10
26秒前
Criminology34应助科研通管家采纳,获得10
26秒前
28秒前
31秒前
LALA发布了新的文献求助10
33秒前
爱航哥多久了完成签到 ,获得积分10
34秒前
桐桐应助LALA采纳,获得10
41秒前
黑翅鸢完成签到 ,获得积分10
47秒前
明轩完成签到,获得积分10
51秒前
54秒前
lllyq发布了新的文献求助10
59秒前
星辰大海应助李博士采纳,获得10
1分钟前
李健的小迷弟应助ChenGY采纳,获得20
1分钟前
1分钟前
1分钟前
李博士发布了新的文献求助10
1分钟前
光合作用完成签到,获得积分10
1分钟前
1分钟前
newplayer完成签到,获得积分10
1分钟前
nic关注了科研通微信公众号
1分钟前
一只呆呆完成签到,获得积分10
1分钟前
务实书包完成签到,获得积分10
1分钟前
1分钟前
1分钟前
ChenGY发布了新的文献求助20
1分钟前
1分钟前
1分钟前
yj完成签到,获得积分10
1分钟前
ChenGY发布了新的文献求助10
1分钟前
lly发布了新的文献求助10
1分钟前
一只呆呆发布了新的文献求助10
1分钟前
1分钟前
decade发布了新的文献求助10
1分钟前
decade完成签到,获得积分10
1分钟前
1分钟前
一只呆呆发布了新的文献求助10
2分钟前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5454784
求助须知:如何正确求助?哪些是违规求助? 4562164
关于积分的说明 14284810
捐赠科研通 4485976
什么是DOI,文献DOI怎么找? 2457164
邀请新用户注册赠送积分活动 1447790
关于科研通互助平台的介绍 1422988