An efficient differential evolution algorithm based on orthogonal learning and elites local search mechanisms for numerical optimization

早熟收敛 差异进化 计算机科学 水准点(测量) 人口 趋同(经济学) 算法 进化算法 数学优化 局部搜索(优化) 全局优化 局部最优 人工智能 机器学习 数学 粒子群优化 社会学 人口学 经济 经济增长 地理 大地测量学
作者
Chunlei Li,Libao Deng,Liyan Qiao,Lili Zhang
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:235: 107636-107636 被引量:20
标识
DOI:10.1016/j.knosys.2021.107636
摘要

Differential evolution (DE) is an efficient stochastic algorithm for solving global numerical optimization problems. To effectively relieve the stagnation and premature convergence problems in DE, this paper presents an efficient DE variant, abbreviated as OLELS-DE, by designing orthogonal learning and elites local search mechanisms. More specifically, the stagnation or premature convergence phenomenon will be detected by monitoring the best individual's update condition during the evolution, then a population diversity estimation technique is utilized to distinguish between these two conditions empirically. To recover the population's evolution vitality according to the classification results, the enhanced orthogonal learning scheme is employed by selecting two different groups of individuals for constructing the orthogonal experimental design procedure. Moreover, the elites local search method is developed by selecting several well-performing elite individuals based on the Gaussian distribution model to further assist the former orthogonal learning mechanism. This scheme is designed to enhance the exploitation ability by searching the regions around elite individuals. The parameters and strategies in above two mechanisms are designed on the expectation of balancing the local exploitation and global exploration capabilities. The optimization performance of proposed OLELS-DE algorithm is evaluated based on 30 benchmark functions from CEC2014 test suite and is compared with eight state-of-the-art DE variants. As it was anticipated, the incorporation of orthogonal learning and elites local search mechanisms helps OLELS-DE have significantly better or at least comparable performance to the adopted DE competitors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YZQ发布了新的文献求助10
1秒前
黑咖啡完成签到,获得积分10
1秒前
Liufgui应助可靠的如之采纳,获得10
3秒前
科研通AI2S应助阿俊采纳,获得10
4秒前
5秒前
7秒前
9秒前
9秒前
JamesPei应助YZQ采纳,获得10
10秒前
Orange应助邪恶花生米采纳,获得10
10秒前
weijie发布了新的文献求助10
10秒前
hf完成签到,获得积分10
10秒前
10秒前
12秒前
量子星尘发布了新的文献求助30
13秒前
硅负极完成签到,获得积分10
13秒前
zzt发布了新的文献求助10
13秒前
14秒前
Dr.Yang发布了新的文献求助10
15秒前
17秒前
刻苦的秋柔完成签到,获得积分10
19秒前
意大利种马完成签到,获得积分20
20秒前
orixero应助写得出发的中采纳,获得10
22秒前
刘雨森完成签到 ,获得积分10
23秒前
坦率白萱应助littleblack采纳,获得10
24秒前
香蕉觅云应助意大利种马采纳,获得10
25秒前
ZS完成签到,获得积分10
25秒前
帅哥的事情少管完成签到,获得积分10
26秒前
littlestone完成签到,获得积分10
27秒前
NexusExplorer应助ShuXU采纳,获得10
29秒前
果果完成签到,获得积分10
29秒前
项绝义完成签到,获得积分10
30秒前
30秒前
空古悠浪发布了新的文献求助20
30秒前
30秒前
30秒前
32秒前
所所应助Richard采纳,获得10
32秒前
热心市民小红花应助哈哈采纳,获得50
32秒前
33秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988920
求助须知:如何正确求助?哪些是违规求助? 3531290
关于积分的说明 11253247
捐赠科研通 3269903
什么是DOI,文献DOI怎么找? 1804830
邀请新用户注册赠送积分活动 882027
科研通“疑难数据库(出版商)”最低求助积分说明 809052