An efficient differential evolution algorithm based on orthogonal learning and elites local search mechanisms for numerical optimization

早熟收敛 差异进化 计算机科学 水准点(测量) 人口 趋同(经济学) 算法 进化算法 数学优化 局部搜索(优化) 全局优化 局部最优 人工智能 机器学习 数学 粒子群优化 社会学 人口学 经济 地理 经济增长 大地测量学
作者
Chunlei Li,Libao Deng,Liyan Qiao,Lili Zhang
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:235: 107636-107636 被引量:26
标识
DOI:10.1016/j.knosys.2021.107636
摘要

Differential evolution (DE) is an efficient stochastic algorithm for solving global numerical optimization problems. To effectively relieve the stagnation and premature convergence problems in DE, this paper presents an efficient DE variant, abbreviated as OLELS-DE, by designing orthogonal learning and elites local search mechanisms. More specifically, the stagnation or premature convergence phenomenon will be detected by monitoring the best individual's update condition during the evolution, then a population diversity estimation technique is utilized to distinguish between these two conditions empirically. To recover the population's evolution vitality according to the classification results, the enhanced orthogonal learning scheme is employed by selecting two different groups of individuals for constructing the orthogonal experimental design procedure. Moreover, the elites local search method is developed by selecting several well-performing elite individuals based on the Gaussian distribution model to further assist the former orthogonal learning mechanism. This scheme is designed to enhance the exploitation ability by searching the regions around elite individuals. The parameters and strategies in above two mechanisms are designed on the expectation of balancing the local exploitation and global exploration capabilities. The optimization performance of proposed OLELS-DE algorithm is evaluated based on 30 benchmark functions from CEC2014 test suite and is compared with eight state-of-the-art DE variants. As it was anticipated, the incorporation of orthogonal learning and elites local search mechanisms helps OLELS-DE have significantly better or at least comparable performance to the adopted DE competitors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
彭于晏应助明亮的颖采纳,获得10
1秒前
2秒前
yamoon完成签到,获得积分10
2秒前
xy发布了新的文献求助10
3秒前
优美亦云发布了新的文献求助10
5秒前
李爱国应助诚c采纳,获得10
5秒前
6秒前
6秒前
爆米花应助折旧采纳,获得10
9秒前
桐桐应助poppy采纳,获得10
9秒前
隐形曼青应助密斯锌硒采纳,获得10
9秒前
小青椒应助科研通管家采纳,获得30
10秒前
大模型应助科研通管家采纳,获得10
10秒前
sevenhill应助科研通管家采纳,获得10
10秒前
Orange应助科研通管家采纳,获得10
10秒前
VDC应助科研通管家采纳,获得30
10秒前
情怀应助科研通管家采纳,获得10
10秒前
sevenhill应助科研通管家采纳,获得10
10秒前
yuu应助科研通管家采纳,获得10
10秒前
共享精神应助张立敏采纳,获得10
10秒前
NexusExplorer应助科研通管家采纳,获得10
11秒前
小马甲应助科研通管家采纳,获得10
11秒前
打打应助科研通管家采纳,获得10
11秒前
VDC应助科研通管家采纳,获得30
11秒前
田様应助科研通管家采纳,获得10
11秒前
CipherSage应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
小马甲应助科研通管家采纳,获得10
11秒前
Owen应助科研通管家采纳,获得10
11秒前
sevenhill应助科研通管家采纳,获得10
11秒前
美好斓应助科研通管家采纳,获得100
11秒前
VDC应助科研通管家采纳,获得30
11秒前
CipherSage应助科研通管家采纳,获得10
11秒前
yu发布了新的文献求助10
11秒前
11秒前
Hanoi347应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
11秒前
11秒前
高分求助中
Learning and Memory: A Comprehensive Reference 2000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1541
The Jasper Project 800
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Binary Alloy Phase Diagrams, 2nd Edition 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5500984
求助须知:如何正确求助?哪些是违规求助? 4597393
关于积分的说明 14458827
捐赠科研通 4530714
什么是DOI,文献DOI怎么找? 2482919
邀请新用户注册赠送积分活动 1466601
关于科研通互助平台的介绍 1439291