An efficient differential evolution algorithm based on orthogonal learning and elites local search mechanisms for numerical optimization

早熟收敛 差异进化 计算机科学 水准点(测量) 人口 趋同(经济学) 算法 进化算法 数学优化 局部搜索(优化) 全局优化 局部最优 人工智能 机器学习 数学 粒子群优化 社会学 人口学 经济 经济增长 地理 大地测量学
作者
Chunlei Li,Libao Deng,Liyan Qiao,Lili Zhang
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:235: 107636-107636 被引量:26
标识
DOI:10.1016/j.knosys.2021.107636
摘要

Differential evolution (DE) is an efficient stochastic algorithm for solving global numerical optimization problems. To effectively relieve the stagnation and premature convergence problems in DE, this paper presents an efficient DE variant, abbreviated as OLELS-DE, by designing orthogonal learning and elites local search mechanisms. More specifically, the stagnation or premature convergence phenomenon will be detected by monitoring the best individual's update condition during the evolution, then a population diversity estimation technique is utilized to distinguish between these two conditions empirically. To recover the population's evolution vitality according to the classification results, the enhanced orthogonal learning scheme is employed by selecting two different groups of individuals for constructing the orthogonal experimental design procedure. Moreover, the elites local search method is developed by selecting several well-performing elite individuals based on the Gaussian distribution model to further assist the former orthogonal learning mechanism. This scheme is designed to enhance the exploitation ability by searching the regions around elite individuals. The parameters and strategies in above two mechanisms are designed on the expectation of balancing the local exploitation and global exploration capabilities. The optimization performance of proposed OLELS-DE algorithm is evaluated based on 30 benchmark functions from CEC2014 test suite and is compared with eight state-of-the-art DE variants. As it was anticipated, the incorporation of orthogonal learning and elites local search mechanisms helps OLELS-DE have significantly better or at least comparable performance to the adopted DE competitors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
无花果应助典雅的俊驰采纳,获得10
刚刚
1秒前
1秒前
烟花应助SCurry3rain采纳,获得30
1秒前
完美世界应助闪闪的飞雪采纳,获得10
1秒前
yangsouth发布了新的文献求助10
2秒前
研友_85YNe8完成签到,获得积分10
2秒前
将夕发布了新的文献求助10
2秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
4秒前
4秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
yyy完成签到 ,获得积分10
5秒前
DG完成签到,获得积分10
5秒前
chai发布了新的文献求助10
7秒前
7秒前
7秒前
yt发布了新的文献求助10
8秒前
五1232发布了新的文献求助10
8秒前
坦率的曲奇完成签到,获得积分10
8秒前
10秒前
11秒前
NOT发布了新的文献求助10
13秒前
14秒前
Archie发布了新的文献求助30
14秒前
平方完成签到,获得积分10
14秒前
cym完成签到,获得积分10
14秒前
Jin完成签到 ,获得积分10
15秒前
77完成签到 ,获得积分10
16秒前
shanshan发布了新的文献求助10
16秒前
17秒前
17秒前
哈哈完成签到,获得积分20
17秒前
18秒前
18秒前
20秒前
西柚稀有西柚完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Research Handbook on Social Interaction 1000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5656742
求助须知:如何正确求助?哪些是违规求助? 4805800
关于积分的说明 15077356
捐赠科研通 4814948
什么是DOI,文献DOI怎么找? 2576219
邀请新用户注册赠送积分活动 1531465
关于科研通互助平台的介绍 1490025