An efficient differential evolution algorithm based on orthogonal learning and elites local search mechanisms for numerical optimization

早熟收敛 差异进化 计算机科学 水准点(测量) 人口 趋同(经济学) 算法 进化算法 数学优化 局部搜索(优化) 全局优化 局部最优 人工智能 机器学习 数学 粒子群优化 社会学 人口学 经济 地理 经济增长 大地测量学
作者
Chunlei Li,Libao Deng,Liyan Qiao,Lili Zhang
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:235: 107636-107636 被引量:26
标识
DOI:10.1016/j.knosys.2021.107636
摘要

Differential evolution (DE) is an efficient stochastic algorithm for solving global numerical optimization problems. To effectively relieve the stagnation and premature convergence problems in DE, this paper presents an efficient DE variant, abbreviated as OLELS-DE, by designing orthogonal learning and elites local search mechanisms. More specifically, the stagnation or premature convergence phenomenon will be detected by monitoring the best individual's update condition during the evolution, then a population diversity estimation technique is utilized to distinguish between these two conditions empirically. To recover the population's evolution vitality according to the classification results, the enhanced orthogonal learning scheme is employed by selecting two different groups of individuals for constructing the orthogonal experimental design procedure. Moreover, the elites local search method is developed by selecting several well-performing elite individuals based on the Gaussian distribution model to further assist the former orthogonal learning mechanism. This scheme is designed to enhance the exploitation ability by searching the regions around elite individuals. The parameters and strategies in above two mechanisms are designed on the expectation of balancing the local exploitation and global exploration capabilities. The optimization performance of proposed OLELS-DE algorithm is evaluated based on 30 benchmark functions from CEC2014 test suite and is compared with eight state-of-the-art DE variants. As it was anticipated, the incorporation of orthogonal learning and elites local search mechanisms helps OLELS-DE have significantly better or at least comparable performance to the adopted DE competitors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
向日葵发布了新的文献求助10
刚刚
科研通AI6应助JJJ采纳,获得10
4秒前
4秒前
jf关注了科研通微信公众号
5秒前
金条完成签到,获得积分10
6秒前
7秒前
7秒前
8秒前
要减肥白开水完成签到,获得积分10
8秒前
ChristineJay完成签到,获得积分10
8秒前
20010完成签到,获得积分10
9秒前
SixDogs发布了新的文献求助13
10秒前
10秒前
搞笑地雷完成签到 ,获得积分10
10秒前
11完成签到,获得积分10
11秒前
贺格平发布了新的文献求助10
11秒前
小董完成签到,获得积分20
14秒前
BENpao123发布了新的文献求助10
14秒前
所所应助无问西东采纳,获得10
15秒前
15秒前
16秒前
bombing2048完成签到 ,获得积分10
17秒前
Hello应助谦让寄容采纳,获得10
17秒前
香蕉觅云应助Wenyilong采纳,获得10
17秒前
19秒前
lml发布了新的文献求助10
19秒前
20秒前
20秒前
20秒前
刻苦秋尽完成签到,获得积分20
20秒前
空白发布了新的文献求助10
20秒前
justin完成签到,获得积分10
21秒前
21秒前
22秒前
22秒前
科研通AI6应助lex采纳,获得10
22秒前
23秒前
Darius发布了新的文献求助10
24秒前
24秒前
CodeCraft应助现代芷波采纳,获得10
24秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5342574
求助须知:如何正确求助?哪些是违规求助? 4478451
关于积分的说明 13939383
捐赠科研通 4375015
什么是DOI,文献DOI怎么找? 2403911
邀请新用户注册赠送积分活动 1396509
关于科研通互助平台的介绍 1368648