A novel hybrid fuzzy–metaheuristic approach for multimodal single and multi-objective optimization problems

元启发式 进化算法 计算机科学 数学优化 帝国主义竞争算法 人口 多目标优化 早熟收敛 人工智能 分类 遗传算法 机器学习 数学 算法 元优化 人口学 社会学
作者
Farshid Keivanian,Raymond Chiong
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:195: 116199-116199 被引量:17
标识
DOI:10.1016/j.eswa.2021.116199
摘要

In this paper, we propose a novel hybrid fuzzy–metaheuristic approach with the aim of overcoming premature convergence when solving multimodal single and multi-objective optimization problems. The metaheuristic algorithm used in our proposed approach is based on the imperialist competitive algorithm (ICA), a population-based method for optimization. The ICA divides its population into sub-populations, known as empires. Each empire is composed of a high fitness solution—the imperialist—and some lower fitness solutions—the colonies. Colonies move towards their associated imperialist to achieve better status (higher fitness). The most powerful empire tends to attract weaker colonies. These competitions and movements can be enhanced for better algorithm performance. In our hybrid approach, a global learning strategy is devised for each colony to learn from its best-known position, its associated imperialist and the global best imperialist. A fast-evolutionary elitism local search is used to enhance the collaborative search mechanism (competition) in each empire, and thus the overall optimization performance may be improved. Other main evolutionary operators include velocity adaptation and velocity divergence. To address parameterization and computational cost evaluation issues, two fuzzy inferencing mechanisms are designed and used in parallel: one is a learning strategy adaptor in each run, and the other is a smart evolution selector in each running window. For Pareto front approximation, fast-elitism non-dominated sorting is applied to the solutions, and a novel penalized sigma diversity index is designed to estimate the diversity (power) of solutions in the same rank. Comprehensive experimental results based on 22 single-objective and 25 multi-objective benchmark instances clearly show that our proposed approach provides better solutions compared with other popular metaheuristics and state-of-the-art ICA variants. The proposed approach can be used as an optimization module in any intelligent decision-making systems to enhance efficiency and accuracy. The designed fuzzy inferencing mechanisms can also be incorporated into any single- or multi-objective optimizers for parameter tuning purposes, to make the optimizers more adaptive to new problems or environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
量子星尘发布了新的文献求助10
3秒前
上官若男应助魔幻的曼寒采纳,获得10
3秒前
pra完成签到,获得积分20
4秒前
4秒前
一顿三大碗完成签到,获得积分10
4秒前
5秒前
邵大炮发布了新的文献求助10
5秒前
7秒前
李可汗发布了新的文献求助10
7秒前
柏林寒冬完成签到,获得积分10
7秒前
成就小懒虫完成签到,获得积分10
7秒前
8秒前
goodbuhui完成签到,获得积分10
9秒前
无所谓完成签到,获得积分10
9秒前
dan发布了新的文献求助10
11秒前
1548081774完成签到,获得积分10
12秒前
Noah发布了新的文献求助10
12秒前
Akim应助哇咔咔采纳,获得10
13秒前
13秒前
Sj泽完成签到,获得积分10
13秒前
14秒前
14秒前
16秒前
可爱大炮发布了新的文献求助10
18秒前
Xzx1995发布了新的文献求助10
18秒前
思源应助忧虑的代容采纳,获得30
18秒前
dan完成签到,获得积分10
19秒前
19秒前
筱甜发布了新的文献求助10
19秒前
19秒前
研友_VZG7GZ应助mSnBmaterial采纳,获得10
19秒前
所所应助朝暮星河采纳,获得10
20秒前
我是老大应助李晓灿采纳,获得10
21秒前
奔流的河发布了新的文献求助10
22秒前
sxm1004发布了新的文献求助10
22秒前
23秒前
23秒前
帅气鹭洋发布了新的文献求助10
24秒前
Hello应助开心向真采纳,获得10
27秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
徐淮辽南地区新元古代叠层石及生物地层 2000
A new approach to the extrapolation of accelerated life test data 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4023566
求助须知:如何正确求助?哪些是违规求助? 3563544
关于积分的说明 11343185
捐赠科研通 3294981
什么是DOI,文献DOI怎么找? 1814896
邀请新用户注册赠送积分活动 889576
科研通“疑难数据库(出版商)”最低求助积分说明 813019