亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A novel hybrid fuzzy–metaheuristic approach for multimodal single and multi-objective optimization problems

元启发式 进化算法 计算机科学 数学优化 帝国主义竞争算法 人口 多目标优化 早熟收敛 人工智能 分类 遗传算法 机器学习 数学 算法 元优化 人口学 社会学
作者
Farshid Keivanian,Raymond Chiong
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:195: 116199-116199 被引量:24
标识
DOI:10.1016/j.eswa.2021.116199
摘要

In this paper, we propose a novel hybrid fuzzy–metaheuristic approach with the aim of overcoming premature convergence when solving multimodal single and multi-objective optimization problems. The metaheuristic algorithm used in our proposed approach is based on the imperialist competitive algorithm (ICA), a population-based method for optimization. The ICA divides its population into sub-populations, known as empires. Each empire is composed of a high fitness solution—the imperialist—and some lower fitness solutions—the colonies. Colonies move towards their associated imperialist to achieve better status (higher fitness). The most powerful empire tends to attract weaker colonies. These competitions and movements can be enhanced for better algorithm performance. In our hybrid approach, a global learning strategy is devised for each colony to learn from its best-known position, its associated imperialist and the global best imperialist. A fast-evolutionary elitism local search is used to enhance the collaborative search mechanism (competition) in each empire, and thus the overall optimization performance may be improved. Other main evolutionary operators include velocity adaptation and velocity divergence. To address parameterization and computational cost evaluation issues, two fuzzy inferencing mechanisms are designed and used in parallel: one is a learning strategy adaptor in each run, and the other is a smart evolution selector in each running window. For Pareto front approximation, fast-elitism non-dominated sorting is applied to the solutions, and a novel penalized sigma diversity index is designed to estimate the diversity (power) of solutions in the same rank. Comprehensive experimental results based on 22 single-objective and 25 multi-objective benchmark instances clearly show that our proposed approach provides better solutions compared with other popular metaheuristics and state-of-the-art ICA variants. The proposed approach can be used as an optimization module in any intelligent decision-making systems to enhance efficiency and accuracy. The designed fuzzy inferencing mechanisms can also be incorporated into any single- or multi-objective optimizers for parameter tuning purposes, to make the optimizers more adaptive to new problems or environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
6秒前
颜靖仇发布了新的文献求助10
12秒前
13秒前
50秒前
齐天大圣完成签到,获得积分10
52秒前
颜靖仇完成签到,获得积分10
1分钟前
1分钟前
1分钟前
MchemG应助科研通管家采纳,获得20
1分钟前
djh发布了新的文献求助30
1分钟前
2分钟前
howgoods完成签到 ,获得积分10
2分钟前
蓝色的纪念完成签到,获得积分10
2分钟前
科研通AI6应助djh采纳,获得10
3分钟前
风笛完成签到 ,获得积分10
3分钟前
麻辣鸡丝发布了新的文献求助10
3分钟前
麻辣鸡丝完成签到,获得积分10
3分钟前
3分钟前
3分钟前
4分钟前
陀思妥耶夫斯基完成签到 ,获得积分10
5分钟前
cy0824完成签到 ,获得积分10
5分钟前
Criminology34应助科研通管家采纳,获得10
5分钟前
Criminology34应助科研通管家采纳,获得10
5分钟前
5分钟前
馆长应助Echopotter采纳,获得30
6分钟前
祁问儿完成签到 ,获得积分10
6分钟前
7分钟前
Ryu发布了新的文献求助10
7分钟前
读研霹雳完成签到 ,获得积分10
7分钟前
zqy99723发布了新的文献求助10
7分钟前
Criminology34应助科研通管家采纳,获得10
7分钟前
Criminology34应助科研通管家采纳,获得10
7分钟前
Criminology34应助科研通管家采纳,获得10
7分钟前
Criminology34应助科研通管家采纳,获得10
7分钟前
7分钟前
7分钟前
馆长应助霖_赤采纳,获得10
7分钟前
小丸子和zz完成签到 ,获得积分10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4983816
求助须知:如何正确求助?哪些是违规求助? 4234926
关于积分的说明 13189549
捐赠科研通 4027370
什么是DOI,文献DOI怎么找? 2203142
邀请新用户注册赠送积分活动 1215389
关于科研通互助平台的介绍 1132579