A novel hybrid fuzzy–metaheuristic approach for multimodal single and multi-objective optimization problems

元启发式 进化算法 计算机科学 数学优化 帝国主义竞争算法 人口 多目标优化 早熟收敛 人工智能 分类 遗传算法 机器学习 数学 算法 元优化 社会学 人口学
作者
Farshid Keivanian,Raymond Chiong
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:195: 116199-116199 被引量:17
标识
DOI:10.1016/j.eswa.2021.116199
摘要

In this paper, we propose a novel hybrid fuzzy–metaheuristic approach with the aim of overcoming premature convergence when solving multimodal single and multi-objective optimization problems. The metaheuristic algorithm used in our proposed approach is based on the imperialist competitive algorithm (ICA), a population-based method for optimization. The ICA divides its population into sub-populations, known as empires. Each empire is composed of a high fitness solution—the imperialist—and some lower fitness solutions—the colonies. Colonies move towards their associated imperialist to achieve better status (higher fitness). The most powerful empire tends to attract weaker colonies. These competitions and movements can be enhanced for better algorithm performance. In our hybrid approach, a global learning strategy is devised for each colony to learn from its best-known position, its associated imperialist and the global best imperialist. A fast-evolutionary elitism local search is used to enhance the collaborative search mechanism (competition) in each empire, and thus the overall optimization performance may be improved. Other main evolutionary operators include velocity adaptation and velocity divergence. To address parameterization and computational cost evaluation issues, two fuzzy inferencing mechanisms are designed and used in parallel: one is a learning strategy adaptor in each run, and the other is a smart evolution selector in each running window. For Pareto front approximation, fast-elitism non-dominated sorting is applied to the solutions, and a novel penalized sigma diversity index is designed to estimate the diversity (power) of solutions in the same rank. Comprehensive experimental results based on 22 single-objective and 25 multi-objective benchmark instances clearly show that our proposed approach provides better solutions compared with other popular metaheuristics and state-of-the-art ICA variants. The proposed approach can be used as an optimization module in any intelligent decision-making systems to enhance efficiency and accuracy. The designed fuzzy inferencing mechanisms can also be incorporated into any single- or multi-objective optimizers for parameter tuning purposes, to make the optimizers more adaptive to new problems or environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助高大的向南采纳,获得10
1秒前
余好运发布了新的文献求助10
1秒前
2秒前
Hoooo...发布了新的文献求助10
2秒前
小二郎应助Jacob采纳,获得10
2秒前
彭于晏应助森林木采纳,获得10
3秒前
4秒前
慕青应助危机的渊思采纳,获得10
4秒前
5秒前
beibeimao发布了新的文献求助10
5秒前
rtwyrt完成签到,获得积分10
5秒前
5秒前
cc完成签到,获得积分10
5秒前
6秒前
crina完成签到,获得积分10
7秒前
研友_nv2r4n发布了新的文献求助20
8秒前
8秒前
8秒前
佳j完成签到,获得积分10
9秒前
yimingzhangbp完成签到,获得积分20
9秒前
楼一笑发布了新的文献求助10
9秒前
酷炫灵安发布了新的文献求助10
9秒前
Dionysus完成签到,获得积分10
10秒前
友好的煎蛋发布了新的文献求助200
10秒前
psyYang完成签到,获得积分10
11秒前
英姑应助mengloo采纳,获得10
11秒前
yimingzhangbp发布了新的文献求助20
11秒前
科研通AI2S应助crina采纳,获得10
12秒前
12秒前
13秒前
沐沐完成签到 ,获得积分10
14秒前
Owen应助克利夫兰采纳,获得10
14秒前
luyong完成签到 ,获得积分10
14秒前
15秒前
向前走完成签到,获得积分10
15秒前
15秒前
15秒前
哈哈发布了新的文献求助10
15秒前
16秒前
17秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160558
求助须知:如何正确求助?哪些是违规求助? 2811730
关于积分的说明 7893251
捐赠科研通 2470605
什么是DOI,文献DOI怎么找? 1315658
科研通“疑难数据库(出版商)”最低求助积分说明 630920
版权声明 602042