A novel hybrid fuzzy–metaheuristic approach for multimodal single and multi-objective optimization problems

元启发式 进化算法 计算机科学 数学优化 帝国主义竞争算法 人口 多目标优化 早熟收敛 人工智能 分类 遗传算法 机器学习 数学 算法 元优化 人口学 社会学
作者
Farshid Keivanian,Raymond Chiong
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:195: 116199-116199 被引量:24
标识
DOI:10.1016/j.eswa.2021.116199
摘要

In this paper, we propose a novel hybrid fuzzy–metaheuristic approach with the aim of overcoming premature convergence when solving multimodal single and multi-objective optimization problems. The metaheuristic algorithm used in our proposed approach is based on the imperialist competitive algorithm (ICA), a population-based method for optimization. The ICA divides its population into sub-populations, known as empires. Each empire is composed of a high fitness solution—the imperialist—and some lower fitness solutions—the colonies. Colonies move towards their associated imperialist to achieve better status (higher fitness). The most powerful empire tends to attract weaker colonies. These competitions and movements can be enhanced for better algorithm performance. In our hybrid approach, a global learning strategy is devised for each colony to learn from its best-known position, its associated imperialist and the global best imperialist. A fast-evolutionary elitism local search is used to enhance the collaborative search mechanism (competition) in each empire, and thus the overall optimization performance may be improved. Other main evolutionary operators include velocity adaptation and velocity divergence. To address parameterization and computational cost evaluation issues, two fuzzy inferencing mechanisms are designed and used in parallel: one is a learning strategy adaptor in each run, and the other is a smart evolution selector in each running window. For Pareto front approximation, fast-elitism non-dominated sorting is applied to the solutions, and a novel penalized sigma diversity index is designed to estimate the diversity (power) of solutions in the same rank. Comprehensive experimental results based on 22 single-objective and 25 multi-objective benchmark instances clearly show that our proposed approach provides better solutions compared with other popular metaheuristics and state-of-the-art ICA variants. The proposed approach can be used as an optimization module in any intelligent decision-making systems to enhance efficiency and accuracy. The designed fuzzy inferencing mechanisms can also be incorporated into any single- or multi-objective optimizers for parameter tuning purposes, to make the optimizers more adaptive to new problems or environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Metrix发布了新的文献求助10
1秒前
Ava应助cyd2007cyd采纳,获得10
1秒前
东东发布了新的文献求助10
1秒前
吨吨喝水完成签到,获得积分10
1秒前
2秒前
爆米花应助mengyijie2采纳,获得10
2秒前
瑞123456完成签到,获得积分10
2秒前
哈哈哈完成签到,获得积分10
2秒前
木木彡完成签到 ,获得积分10
3秒前
4秒前
葡萄完成签到,获得积分10
4秒前
药石无医发布了新的文献求助10
4秒前
药石无医发布了新的文献求助10
4秒前
Sicecream完成签到,获得积分10
5秒前
5秒前
5秒前
今后应助小福采纳,获得10
6秒前
6秒前
矮小的幼枫完成签到,获得积分10
6秒前
7秒前
seven完成签到,获得积分10
7秒前
7秒前
7秒前
Ortho Wang发布了新的文献求助10
8秒前
董昌铭完成签到 ,获得积分10
8秒前
8秒前
酷酷的安柏完成签到,获得积分10
8秒前
seven发布了新的文献求助10
10秒前
10秒前
调皮的安波完成签到,获得积分10
10秒前
虚幻颖完成签到,获得积分10
10秒前
wwww发布了新的文献求助10
10秒前
10秒前
昌平奶牛完成签到 ,获得积分10
11秒前
东东完成签到,获得积分10
11秒前
汉堡包应助风清扬采纳,获得10
11秒前
白衣修身发布了新的文献求助10
11秒前
11秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4602661
求助须知:如何正确求助?哪些是违规求助? 4011768
关于积分的说明 12420364
捐赠科研通 3692108
什么是DOI,文献DOI怎么找? 2035470
邀请新用户注册赠送积分活动 1068575
科研通“疑难数据库(出版商)”最低求助积分说明 953144