EEGANet: Removal of Ocular Artifacts From the EEG Signal Using Generative Adversarial Networks

计算机科学 脑电图 对抗制 人工智能 生成语法 模式识别(心理学) 生成对抗网络 信号处理 信号(编程语言) 计算机视觉 语音识别 深度学习 神经科学 电信 心理学 雷达 程序设计语言
作者
Phattarapong Sawangjai,Manatsanan Trakulruangroj,Chiraphat Boonnag,Maytus Piriyajitakonkij,Rajesh Kumar Tripathy,Thapanun Sudhawiyangkul,Theerawit Wilaiprasitporn
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (10): 4913-4924 被引量:77
标识
DOI:10.1109/jbhi.2021.3131104
摘要

The elimination of ocular artifacts is critical in analyzing electroencephalography (EEG) data for various brain-computer interface (BCI) applications. Despite numerous promising solutions, electrooculography (EOG) recording or an eye-blink detection algorithm is required for the majority of artifact removal algorithms. This reliance can hinder the model's implementation in real-world applications. This paper proposes EEGANet, a framework based on generative adversarial networks (GANs), to address this issue as a data-driven assistive tool for ocular artifacts removal (source code is available at https://github.com/IoBT-VISTEC/EEGANet). After the model was trained, the removal of ocular artifacts could be applied calibration-free without relying on the EOG channels or the eye blink detection algorithms. First, we tested EEGANet's ability to generate multi-channel EEG signals, artifacts removal performance, and robustness using the EEG eye artifact dataset, which contains a significant degree of data fluctuation. According to the results, EEGANet is comparable to state-of-the-art approaches that utilize EOG channels for artifact removal. Moreover, we demonstrated the effectiveness of EEGANet in BCI applications utilizing two distinct datasets under inter-day and subject-independent schemes. Despite the absence of EOG signals, the classification performance of the signals processed by EEGANet is equivalent to that of traditional baseline methods. This study demonstrates the potential for further use of GANs as a data-driven artifact removal technique for any multivariate time-series bio-signal, which might be a valuable step towards building next-generation healthcare technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
。.。发布了新的文献求助10
1秒前
wl20130000完成签到,获得积分10
2秒前
英俊的铭应助lxzhou采纳,获得10
2秒前
专一的抽屉完成签到,获得积分10
2秒前
番茄大王开心心完成签到,获得积分10
2秒前
3秒前
moumou发布了新的文献求助10
3秒前
科研通AI2S应助自信胡萝卜采纳,获得10
3秒前
慕青应助darling采纳,获得10
3秒前
Orange应助lili采纳,获得10
4秒前
adou发布了新的文献求助10
5秒前
传奇3应助maliao采纳,获得30
5秒前
5秒前
斯文败类应助远古遗迹采纳,获得30
5秒前
wanzixian发布了新的文献求助10
5秒前
DONG完成签到,获得积分10
6秒前
ding应助科研通管家采纳,获得10
6秒前
星辰大海应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
比奇堡派大星完成签到 ,获得积分20
7秒前
NexusExplorer应助科研通管家采纳,获得10
7秒前
乐乐应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
天天快乐应助687采纳,获得10
7秒前
豆芽完成签到 ,获得积分10
7秒前
马尔斯完成签到,获得积分10
8秒前
田様应助单身的老三采纳,获得10
9秒前
DONG发布了新的文献求助10
9秒前
9秒前
MXX完成签到 ,获得积分10
9秒前
n0way完成签到,获得积分10
11秒前
Cat完成签到,获得积分0
11秒前
alanbike完成签到,获得积分10
11秒前
cy2完成签到,获得积分20
12秒前
领导范儿应助宋宋采纳,获得10
12秒前
13秒前
陈小瑜完成签到,获得积分10
13秒前
怡然的扬发布了新的文献求助10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5572176
求助须知:如何正确求助?哪些是违规求助? 4657440
关于积分的说明 14720306
捐赠科研通 4598129
什么是DOI,文献DOI怎么找? 2523579
邀请新用户注册赠送积分活动 1494346
关于科研通互助平台的介绍 1464433