EEGANet: Removal of Ocular Artifacts From the EEG Signal Using Generative Adversarial Networks

计算机科学 工件(错误) 眼电学 脑电图 稳健性(进化) 人工智能 脑-机接口 模式识别(心理学) 信号(编程语言) 计算机视觉 眼球运动 语音识别 心理学 精神科 基因 化学 生物化学 程序设计语言
作者
Phattarapong Sawangjai,Manatsanan Trakulruangroj,Chiraphat Boonnag,Maytus Piriyajitakonkij,Rajesh Kumar Tripathy,Thapanun Sudhawiyangkul,Theerawit Wilaiprasitporn
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (10): 4913-4924 被引量:41
标识
DOI:10.1109/jbhi.2021.3131104
摘要

The elimination of ocular artifacts is critical in analyzing electroencephalography (EEG) data for various brain-computer interface (BCI) applications. Despite numerous promising solutions, electrooculography (EOG) recording or an eye-blink detection algorithm is required for the majority of artifact removal algorithms. This reliance can hinder the model's implementation in real-world applications. This paper proposes EEGANet, a framework based on generative adversarial networks (GANs), to address this issue as a data-driven assistive tool for ocular artifacts removal (source code is available at https://github.com/IoBT-VISTEC/EEGANet). After the model was trained, the removal of ocular artifacts could be applied calibration-free without relying on the EOG channels or the eye blink detection algorithms. First, we tested EEGANet's ability to generate multi-channel EEG signals, artifacts removal performance, and robustness using the EEG eye artifact dataset, which contains a significant degree of data fluctuation. According to the results, EEGANet is comparable to state-of-the-art approaches that utilize EOG channels for artifact removal. Moreover, we demonstrated the effectiveness of EEGANet in BCI applications utilizing two distinct datasets under inter-day and subject-independent schemes. Despite the absence of EOG signals, the classification performance of the signals processed by EEGANet is equivalent to that of traditional baseline methods. This study demonstrates the potential for further use of GANs as a data-driven artifact removal technique for any multivariate time-series bio-signal, which might be a valuable step towards building next-generation healthcare technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助霸气的梦露采纳,获得10
1秒前
zfy发布了新的文献求助10
1秒前
傅31发布了新的文献求助10
1秒前
2秒前
慈祥的奶奶完成签到,获得积分10
2秒前
田様应助leo采纳,获得50
2秒前
000完成签到,获得积分20
2秒前
1503020发布了新的文献求助10
2秒前
超文献完成签到,获得积分10
2秒前
2秒前
大个应助leslie采纳,获得10
2秒前
时间纬度完成签到,获得积分10
3秒前
3秒前
光亮星星发布了新的文献求助10
4秒前
科目三应助yaya采纳,获得10
4秒前
4秒前
阔达的凡儿完成签到,获得积分10
5秒前
善学以致用应助kingmantj采纳,获得10
5秒前
6秒前
烟花应助彩色子轩采纳,获得10
6秒前
6秒前
6秒前
小蘑菇应助小圆圈采纳,获得10
6秒前
6秒前
FashionBoy应助魁梧的雨双采纳,获得10
7秒前
Gilana发布了新的文献求助10
7秒前
搜集达人应助violetlishu采纳,获得20
8秒前
9秒前
落叶发布了新的文献求助10
9秒前
Xu完成签到,获得积分10
9秒前
沉默听芹发布了新的文献求助10
9秒前
hwasaa发布了新的文献求助10
10秒前
背着文章跑完成签到,获得积分10
11秒前
36456657应助MYYYY采纳,获得10
11秒前
Pomelo完成签到,获得积分10
13秒前
Hello应助柳子枭采纳,获得10
13秒前
13秒前
华仔应助彩色石头采纳,获得10
13秒前
封嘉懿完成签到,获得积分10
14秒前
稳重的若雁完成签到,获得积分10
15秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3226600
求助须知:如何正确求助?哪些是违规求助? 2874946
关于积分的说明 8188627
捐赠科研通 2541933
什么是DOI,文献DOI怎么找? 1372477
科研通“疑难数据库(出版商)”最低求助积分说明 646489
邀请新用户注册赠送积分活动 620853