EEGANet: Removal of Ocular Artifacts From the EEG Signal Using Generative Adversarial Networks

计算机科学 脑电图 对抗制 人工智能 生成语法 模式识别(心理学) 生成对抗网络 信号处理 信号(编程语言) 计算机视觉 语音识别 深度学习 神经科学 电信 心理学 雷达 程序设计语言
作者
Phattarapong Sawangjai,Manatsanan Trakulruangroj,Chiraphat Boonnag,Maytus Piriyajitakonkij,Rajesh Kumar Tripathy,Thapanun Sudhawiyangkul,Theerawit Wilaiprasitporn
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (10): 4913-4924 被引量:58
标识
DOI:10.1109/jbhi.2021.3131104
摘要

The elimination of ocular artifacts is critical in analyzing electroencephalography (EEG) data for various brain-computer interface (BCI) applications. Despite numerous promising solutions, electrooculography (EOG) recording or an eye-blink detection algorithm is required for the majority of artifact removal algorithms. This reliance can hinder the model's implementation in real-world applications. This paper proposes EEGANet, a framework based on generative adversarial networks (GANs), to address this issue as a data-driven assistive tool for ocular artifacts removal (source code is available at https://github.com/IoBT-VISTEC/EEGANet ). After the model was trained, the removal of ocular artifacts could be applied calibration-free without relying on the EOG channels or the eye blink detection algorithms. First, we tested EEGANet's ability to generate multi-channel EEG signals, artifacts removal performance, and robustness using the EEG eye artifact dataset, which contains a significant degree of data fluctuation. According to the results, EEGANet is comparable to state-of-the-art approaches that utilize EOG channels for artifact removal. Moreover, we demonstrated the effectiveness of EEGANet in BCI applications utilizing two distinct datasets under inter-day and subject-independent schemes. Despite the absence of EOG signals, the classification performance of the signals processed by EEGANet is equivalent to that of traditional baseline methods. This study demonstrates the potential for further use of GANs as a data-driven artifact removal technique for any multivariate time-series bio-signal, which might be a valuable step towards building next-generation healthcare technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助张一二二二采纳,获得10
刚刚
刚刚
刚刚
刚刚
1秒前
在水一方应助努力的蜗牛采纳,获得10
1秒前
搜集达人应助nnmm11采纳,获得10
1秒前
1秒前
科研通AI2S应助Chnp采纳,获得10
1秒前
体贴半仙完成签到,获得积分20
2秒前
2秒前
2秒前
2秒前
灵巧的沛山完成签到,获得积分10
3秒前
哒哒猪完成签到,获得积分10
3秒前
酷波er应助他方世界采纳,获得10
4秒前
4秒前
zn315315完成签到,获得积分10
4秒前
弓长发布了新的文献求助10
4秒前
雷xy发布了新的文献求助10
5秒前
英姑应助wiink采纳,获得10
5秒前
5秒前
慕青应助真理采纳,获得10
5秒前
6秒前
juwairen119发布了新的文献求助10
6秒前
tracer发布了新的文献求助10
6秒前
网GHD发布了新的文献求助10
7秒前
CodeCraft应助完美的念柏采纳,获得10
7秒前
8秒前
jial发布了新的文献求助10
8秒前
一口完成签到,获得积分10
8秒前
9秒前
9秒前
桐桐应助杨昌琪采纳,获得10
9秒前
科研通AI6应助strawberry采纳,获得10
9秒前
Lft完成签到,获得积分10
10秒前
10秒前
九幺发布了新的文献求助10
10秒前
天天快乐应助九城采纳,获得10
10秒前
入梦发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5513178
求助须知:如何正确求助?哪些是违规求助? 4607547
关于积分的说明 14505663
捐赠科研通 4543090
什么是DOI,文献DOI怎么找? 2489360
邀请新用户注册赠送积分活动 1471340
关于科研通互助平台的介绍 1443362