亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

EEGANet: Removal of Ocular Artifacts From the EEG Signal Using Generative Adversarial Networks

计算机科学 脑电图 对抗制 人工智能 生成语法 模式识别(心理学) 生成对抗网络 信号处理 信号(编程语言) 计算机视觉 语音识别 深度学习 神经科学 电信 心理学 雷达 程序设计语言
作者
Phattarapong Sawangjai,Manatsanan Trakulruangroj,Chiraphat Boonnag,Maytus Piriyajitakonkij,Rajesh Kumar Tripathy,Thapanun Sudhawiyangkul,Theerawit Wilaiprasitporn
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (10): 4913-4924 被引量:77
标识
DOI:10.1109/jbhi.2021.3131104
摘要

The elimination of ocular artifacts is critical in analyzing electroencephalography (EEG) data for various brain-computer interface (BCI) applications. Despite numerous promising solutions, electrooculography (EOG) recording or an eye-blink detection algorithm is required for the majority of artifact removal algorithms. This reliance can hinder the model's implementation in real-world applications. This paper proposes EEGANet, a framework based on generative adversarial networks (GANs), to address this issue as a data-driven assistive tool for ocular artifacts removal (source code is available at https://github.com/IoBT-VISTEC/EEGANet). After the model was trained, the removal of ocular artifacts could be applied calibration-free without relying on the EOG channels or the eye blink detection algorithms. First, we tested EEGANet's ability to generate multi-channel EEG signals, artifacts removal performance, and robustness using the EEG eye artifact dataset, which contains a significant degree of data fluctuation. According to the results, EEGANet is comparable to state-of-the-art approaches that utilize EOG channels for artifact removal. Moreover, we demonstrated the effectiveness of EEGANet in BCI applications utilizing two distinct datasets under inter-day and subject-independent schemes. Despite the absence of EOG signals, the classification performance of the signals processed by EEGANet is equivalent to that of traditional baseline methods. This study demonstrates the potential for further use of GANs as a data-driven artifact removal technique for any multivariate time-series bio-signal, which might be a valuable step towards building next-generation healthcare technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Pengfei_Soil发布了新的文献求助10
2秒前
3秒前
9秒前
11秒前
yyds完成签到,获得积分0
12秒前
15秒前
嘻嘻嘻完成签到,获得积分10
15秒前
18秒前
19秒前
2jz发布了新的文献求助10
23秒前
maopf发布了新的文献求助10
28秒前
小蘑菇应助结实的凉面采纳,获得10
30秒前
30秒前
qianyixingchen完成签到 ,获得积分10
34秒前
SciGPT应助沉默的倔驴采纳,获得10
35秒前
迅速初柳发布了新的文献求助10
36秒前
maopf完成签到,获得积分10
40秒前
c7发布了新的文献求助10
41秒前
英俊的铭应助迅速初柳采纳,获得10
44秒前
45秒前
西蓝花战士完成签到 ,获得积分10
49秒前
50秒前
炙热成仁发布了新的文献求助10
51秒前
NI完成签到 ,获得积分10
57秒前
59秒前
赘婿应助悦耳青梦采纳,获得10
1分钟前
科研通AI6.1应助我不吃葱采纳,获得10
1分钟前
科研通AI6.1应助小年小少采纳,获得20
1分钟前
炙热成仁完成签到,获得积分10
1分钟前
希希完成签到 ,获得积分10
1分钟前
Joy关注了科研通微信公众号
1分钟前
Hello应助沉默的倔驴采纳,获得10
1分钟前
奶奶的龙应助科研通管家采纳,获得10
1分钟前
奶奶的龙应助科研通管家采纳,获得10
1分钟前
null应助科研通管家采纳,获得10
1分钟前
脑洞疼应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
在水一方应助科研通管家采纳,获得10
1分钟前
奶奶的龙应助科研通管家采纳,获得10
1分钟前
李健应助科研通管家采纳,获得10
1分钟前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5746540
求助须知:如何正确求助?哪些是违规求助? 5435517
关于积分的说明 15355531
捐赠科研通 4886528
什么是DOI,文献DOI怎么找? 2627297
邀请新用户注册赠送积分活动 1575762
关于科研通互助平台的介绍 1532510