EEGANet: Removal of Ocular Artifacts From the EEG Signal Using Generative Adversarial Networks

计算机科学 脑电图 对抗制 人工智能 生成语法 模式识别(心理学) 生成对抗网络 信号处理 信号(编程语言) 计算机视觉 语音识别 深度学习 神经科学 电信 心理学 雷达 程序设计语言
作者
Phattarapong Sawangjai,Manatsanan Trakulruangroj,Chiraphat Boonnag,Maytus Piriyajitakonkij,Rajesh Kumar Tripathy,Thapanun Sudhawiyangkul,Theerawit Wilaiprasitporn
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (10): 4913-4924 被引量:77
标识
DOI:10.1109/jbhi.2021.3131104
摘要

The elimination of ocular artifacts is critical in analyzing electroencephalography (EEG) data for various brain-computer interface (BCI) applications. Despite numerous promising solutions, electrooculography (EOG) recording or an eye-blink detection algorithm is required for the majority of artifact removal algorithms. This reliance can hinder the model's implementation in real-world applications. This paper proposes EEGANet, a framework based on generative adversarial networks (GANs), to address this issue as a data-driven assistive tool for ocular artifacts removal (source code is available at https://github.com/IoBT-VISTEC/EEGANet). After the model was trained, the removal of ocular artifacts could be applied calibration-free without relying on the EOG channels or the eye blink detection algorithms. First, we tested EEGANet's ability to generate multi-channel EEG signals, artifacts removal performance, and robustness using the EEG eye artifact dataset, which contains a significant degree of data fluctuation. According to the results, EEGANet is comparable to state-of-the-art approaches that utilize EOG channels for artifact removal. Moreover, we demonstrated the effectiveness of EEGANet in BCI applications utilizing two distinct datasets under inter-day and subject-independent schemes. Despite the absence of EOG signals, the classification performance of the signals processed by EEGANet is equivalent to that of traditional baseline methods. This study demonstrates the potential for further use of GANs as a data-driven artifact removal technique for any multivariate time-series bio-signal, which might be a valuable step towards building next-generation healthcare technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
EMMA完成签到,获得积分10
刚刚
鱼大大发布了新的文献求助10
1秒前
ccc发布了新的文献求助10
1秒前
寻道图强举报kido求助涉嫌违规
1秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
3秒前
梦想成神发布了新的文献求助10
4秒前
殷勤的皮卡丘完成签到,获得积分10
4秒前
长苼完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
JCSY应助酥酥采纳,获得10
6秒前
6秒前
平常的茗茗完成签到,获得积分10
7秒前
呆萌语梦发布了新的文献求助10
7秒前
8秒前
9秒前
9秒前
bkagyin应助优秀的枫叶采纳,获得10
10秒前
田様应助宋灵竹采纳,获得10
10秒前
10秒前
11秒前
小魏完成签到,获得积分10
11秒前
宇文风行发布了新的文献求助10
11秒前
11秒前
所所应助梦想成神采纳,获得10
11秒前
危险份子发布了新的文献求助10
11秒前
等待的三问完成签到,获得积分10
12秒前
12秒前
12秒前
hui发布了新的文献求助10
12秒前
安子发布了新的文献求助10
13秒前
13秒前
13秒前
orixero应助肥肥菲采纳,获得10
13秒前
14秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695131
求助须知:如何正确求助?哪些是违规求助? 5100385
关于积分的说明 15215391
捐赠科研通 4851561
什么是DOI,文献DOI怎么找? 2602454
邀请新用户注册赠送积分活动 1554227
关于科研通互助平台的介绍 1512186