Solving the vehicle routing problem with drone for delivery services using an ant colony optimization algorithm

无人机 卡车 蚁群优化算法 车辆路径问题 计算机科学 布线(电子设计自动化) 服务(商务) 整数规划 蚁群 运筹学 工程类 数学优化 算法 计算机网络 业务 汽车工程 数学 遗传学 生物 营销
作者
Shan-Huen Huang,Ying‐Hua Huang,Carola Blázquez,Chia-Yi Chen
出处
期刊:Advanced Engineering Informatics [Elsevier]
卷期号:51: 101536-101536 被引量:75
标识
DOI:10.1016/j.aei.2022.101536
摘要

E-commerce and logistics companies are facing important challenges to satisfy the rapid growth of customer demands. Unmanned aerial vehicles such as drones are an emerging technology that are very useful to cope with rising customer expectations of fast, flexible, and reliable delivery services. Drones work in tandem with trucks to perform parcel delivery, which have proven to reduce costs, CO2 emissions, and delivery times. This research proposes a mixed integer programming formulation to address the Vehicle Routing Problem with Drone (VRPD) by assigning customers to drone-truck pairs, determining the number of dispatching drone-truck units, and obtaining optimal service routes while the fixed and travel costs of both vehicles are minimized. Given the NP-hard nature of the VRPD, an ant colony optimization (ACO) algorithm is elaborated to solve this problem. Two novel methods are proposed to investigate the efficiency of the drone-truck combination by allowing the drones to perform additional delivery services to only one feasible customer and also multiple feasible customers while the truck waits at a customer location. Experimental results show that the proposed ACO algorithm can effectively solve the VRDP for different size instances and different customer location distributions, and is successful in providing timely solutions for small test instances within 1% of the optimal solutions. Finally, experimentation also reveals that the ACO algorithm outperforms the classical VRP by obtaining cost-savings of over 30% for large instances.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
whatever应助科研通管家采纳,获得10
1秒前
英俊的铭应助科研通管家采纳,获得10
1秒前
大模型应助科研通管家采纳,获得10
1秒前
情怀应助科研通管家采纳,获得10
2秒前
tuanheqi应助科研通管家采纳,获得50
2秒前
汉堡包应助科研通管家采纳,获得10
2秒前
香蕉觅云应助科研通管家采纳,获得10
2秒前
雅悦完成签到,获得积分10
2秒前
高挑的幼翠完成签到 ,获得积分10
2秒前
科研通AI2S应助lz采纳,获得10
2秒前
脑洞疼应助科研通管家采纳,获得10
2秒前
共享精神应助科研通管家采纳,获得10
2秒前
斯文败类应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
传奇3应助科研通管家采纳,获得10
2秒前
WonderHua应助科研通管家采纳,获得30
2秒前
gege应助科研通管家采纳,获得10
2秒前
2秒前
快乐滑板应助科研通管家采纳,获得10
2秒前
深情安青应助科研通管家采纳,获得10
2秒前
快乐滑板应助科研通管家采纳,获得10
3秒前
3秒前
子车茗应助科研通管家采纳,获得30
3秒前
3秒前
快乐滑板应助科研通管家采纳,获得10
3秒前
子车茗应助科研通管家采纳,获得30
3秒前
3秒前
不扯先生完成签到,获得积分10
4秒前
5秒前
zoie0809发布了新的文献求助10
5秒前
打打应助hhh采纳,获得10
7秒前
搜集达人应助wdlc采纳,获得10
7秒前
DGFR完成签到,获得积分10
7秒前
8秒前
eagle14835发布了新的文献求助10
8秒前
10秒前
10秒前
oxear完成签到,获得积分10
11秒前
zoie0809完成签到,获得积分20
11秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Green building development for a sustainable environment with artificial intelligence technology 500
Zeitschrift für Orient-Archäologie 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3351623
求助须知:如何正确求助?哪些是违规求助? 2977111
关于积分的说明 8677728
捐赠科研通 2658157
什么是DOI,文献DOI怎么找? 1455504
科研通“疑难数据库(出版商)”最低求助积分说明 673959
邀请新用户注册赠送积分活动 664484