已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Development and validation of a model for predicting the risk of suicide in patients with cancer

毒物控制 人为因素与人体工程学 自杀预防 伤害预防 职业安全与健康 医学 癌症 医疗急救 内科学 病理
作者
Lin Du,Haiyan Shi,Yan Qian,Xiaohong Jin,Hairong Yu,Xue‐Lei Fu,Hua Wu,Hong‐Lin Chen
出处
期刊:Archives of Suicide Research [Taylor & Francis]
卷期号:27 (2): 644-659 被引量:6
标识
DOI:10.1080/13811118.2022.2035289
摘要

The objective of this study was to establish a nomogram model to predict SI in patients with cancer and further evaluate its performance.This study was performed among 390 patients in oncology departments of Affiliated Hospital of Nantong University from April 2020 to January 2021. Of these, eligible patients who were diagnosed with cancer were split into training and validation cohorts according the ratio of 2:1 randomly. In the training cohort, multivariate regression was performed to determine the independent variables related to SI. A nomogram was built incorporating these variables. The model performance was evaluated by an independent validation cohort.The prevalence of SI in patients with cancer was 22.31% and 19.23% in training and validation cohorts, respectively. The nomogram model suggested independent variables for SI, including depression, emotional function, time after diagnosis, family function and educational status. The area under the curve (AUC) was 0.93 (95%CI, 0.90-0.97) and 0.82 (95%CI, 0.74-0.90) in training and validation cohorts respectively, which indicated good discrimination of the nomogram in predicting SI in cancer patients. The p-value of the goodness of fit (GOF) test was 0.197 and 0.974 in training and validation cohorts respectively, suggesting our nomogram model has acceptable calibration power, and the calibration curves further indicated good calibration power.In conclusion, the nomogram model for predicting individualized probability of SI could help clinical caregivers estimate the risk of SI in patients with cancer and provide appropriate management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助Lu_ckilly采纳,获得10
刚刚
7秒前
量子星尘发布了新的文献求助10
11秒前
Lu_ckilly发布了新的文献求助10
13秒前
lalala完成签到,获得积分10
14秒前
16秒前
邓力发布了新的文献求助10
22秒前
小付完成签到,获得积分10
27秒前
02发布了新的文献求助10
29秒前
科研通AI5应助硕小牛采纳,获得10
30秒前
量子星尘发布了新的文献求助10
31秒前
33秒前
程程发布了新的文献求助10
39秒前
41秒前
wang5945完成签到 ,获得积分10
43秒前
李健的小迷弟应助李李采纳,获得10
45秒前
量子星尘发布了新的文献求助10
48秒前
dax大雄完成签到 ,获得积分10
49秒前
51秒前
jfaioe完成签到,获得积分10
51秒前
学不死就往死里学关注了科研通微信公众号
52秒前
斯文败类应助炸年糕老彭采纳,获得10
53秒前
54秒前
tjnksy完成签到,获得积分10
54秒前
量子星尘发布了新的文献求助10
55秒前
鲤角兽完成签到,获得积分10
56秒前
ceeray23发布了新的文献求助50
56秒前
Jasper应助Louise采纳,获得10
57秒前
李李发布了新的文献求助10
58秒前
李健的小迷弟应助小付采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
快乐冰之发布了新的文献求助50
1分钟前
量子星尘发布了新的文献求助10
1分钟前
李李完成签到,获得积分20
1分钟前
mmmmk完成签到,获得积分10
1分钟前
1分钟前
xhylalalala发布了新的文献求助10
1分钟前
1分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3666287
求助须知:如何正确求助?哪些是违规求助? 3225351
关于积分的说明 9762737
捐赠科研通 2935243
什么是DOI,文献DOI怎么找? 1607522
邀请新用户注册赠送积分活动 759252
科研通“疑难数据库(出版商)”最低求助积分说明 735185