Development and validation of a model for predicting the risk of suicide in patients with cancer

毒物控制 人为因素与人体工程学 自杀预防 伤害预防 职业安全与健康 医学 癌症 医疗急救 内科学 病理
作者
Lin Du,Haiyan Shi,Yan Qian,Xiaohong Jin,Hairong Yu,Xue‐Lei Fu,Hua Wu,Hong‐Lin Chen
出处
期刊:Archives of Suicide Research [Informa]
卷期号:27 (2): 644-659 被引量:6
标识
DOI:10.1080/13811118.2022.2035289
摘要

The objective of this study was to establish a nomogram model to predict SI in patients with cancer and further evaluate its performance.This study was performed among 390 patients in oncology departments of Affiliated Hospital of Nantong University from April 2020 to January 2021. Of these, eligible patients who were diagnosed with cancer were split into training and validation cohorts according the ratio of 2:1 randomly. In the training cohort, multivariate regression was performed to determine the independent variables related to SI. A nomogram was built incorporating these variables. The model performance was evaluated by an independent validation cohort.The prevalence of SI in patients with cancer was 22.31% and 19.23% in training and validation cohorts, respectively. The nomogram model suggested independent variables for SI, including depression, emotional function, time after diagnosis, family function and educational status. The area under the curve (AUC) was 0.93 (95%CI, 0.90-0.97) and 0.82 (95%CI, 0.74-0.90) in training and validation cohorts respectively, which indicated good discrimination of the nomogram in predicting SI in cancer patients. The p-value of the goodness of fit (GOF) test was 0.197 and 0.974 in training and validation cohorts respectively, suggesting our nomogram model has acceptable calibration power, and the calibration curves further indicated good calibration power.In conclusion, the nomogram model for predicting individualized probability of SI could help clinical caregivers estimate the risk of SI in patients with cancer and provide appropriate management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助科研通管家采纳,获得10
1秒前
情怀应助科研通管家采纳,获得10
1秒前
1秒前
吉祥应助科研通管家采纳,获得30
1秒前
wanci应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
共享精神应助科研通管家采纳,获得10
1秒前
田様应助科研通管家采纳,获得10
1秒前
烟花应助科研通管家采纳,获得10
1秒前
大个应助科研通管家采纳,获得10
1秒前
星辰大海应助科研通管家采纳,获得10
1秒前
ding应助科研通管家采纳,获得10
1秒前
吉祥应助科研通管家采纳,获得30
1秒前
1秒前
1秒前
科研通AI2S应助科研通管家采纳,获得30
1秒前
1秒前
桐桐应助科研通管家采纳,获得10
1秒前
杨杨完成签到,获得积分10
2秒前
5秒前
5秒前
酷波er应助笃定采纳,获得10
6秒前
6秒前
烟花应助跳跃的谷雪采纳,获得100
8秒前
CodeCraft应助DE2022采纳,获得20
8秒前
安静蛟凤完成签到 ,获得积分10
8秒前
科研通AI2S应助Heisenberg采纳,获得10
8秒前
9秒前
华仔应助CATH采纳,获得10
10秒前
11秒前
小李发布了新的文献求助10
12秒前
bubuking发布了新的文献求助10
12秒前
DAY完成签到,获得积分10
14秒前
lenglin完成签到,获得积分20
15秒前
15秒前
科研通AI2S应助sss采纳,获得10
16秒前
橙子完成签到,获得积分10
17秒前
啊湫超爱学习完成签到,获得积分20
18秒前
852应助CC采纳,获得10
19秒前
19秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141175
求助须知:如何正确求助?哪些是违规求助? 2792145
关于积分的说明 7801676
捐赠科研通 2448353
什么是DOI,文献DOI怎么找? 1302516
科研通“疑难数据库(出版商)”最低求助积分说明 626613
版权声明 601237