亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Development and validation of a model for predicting the risk of suicide in patients with cancer

毒物控制 人为因素与人体工程学 自杀预防 伤害预防 职业安全与健康 医学 癌症 医疗急救 内科学 病理
作者
Lin Du,Haiyan Shi,Yan Qian,Xiaohong Jin,Hairong Yu,Xue‐Lei Fu,Hua Wu,Hong‐Lin Chen
出处
期刊:Archives of Suicide Research [Informa]
卷期号:27 (2): 644-659 被引量:6
标识
DOI:10.1080/13811118.2022.2035289
摘要

The objective of this study was to establish a nomogram model to predict SI in patients with cancer and further evaluate its performance.This study was performed among 390 patients in oncology departments of Affiliated Hospital of Nantong University from April 2020 to January 2021. Of these, eligible patients who were diagnosed with cancer were split into training and validation cohorts according the ratio of 2:1 randomly. In the training cohort, multivariate regression was performed to determine the independent variables related to SI. A nomogram was built incorporating these variables. The model performance was evaluated by an independent validation cohort.The prevalence of SI in patients with cancer was 22.31% and 19.23% in training and validation cohorts, respectively. The nomogram model suggested independent variables for SI, including depression, emotional function, time after diagnosis, family function and educational status. The area under the curve (AUC) was 0.93 (95%CI, 0.90-0.97) and 0.82 (95%CI, 0.74-0.90) in training and validation cohorts respectively, which indicated good discrimination of the nomogram in predicting SI in cancer patients. The p-value of the goodness of fit (GOF) test was 0.197 and 0.974 in training and validation cohorts respectively, suggesting our nomogram model has acceptable calibration power, and the calibration curves further indicated good calibration power.In conclusion, the nomogram model for predicting individualized probability of SI could help clinical caregivers estimate the risk of SI in patients with cancer and provide appropriate management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助甜美的起眸采纳,获得10
3秒前
ZTLlele完成签到 ,获得积分10
13秒前
14秒前
大个应助南草北树采纳,获得10
26秒前
可靠诗筠完成签到 ,获得积分10
48秒前
SciGPT应助Efaith采纳,获得10
50秒前
52秒前
zhou发布了新的文献求助10
58秒前
千早爱音应助科研通管家采纳,获得20
1分钟前
YU完成签到 ,获得积分10
1分钟前
1分钟前
zhou完成签到,获得积分10
1分钟前
Efaith发布了新的文献求助10
1分钟前
Efaith完成签到,获得积分20
1分钟前
dddd完成签到,获得积分10
1分钟前
青柚完成签到 ,获得积分10
2分钟前
星辰大海应助xiaoxiao采纳,获得10
2分钟前
2分钟前
2分钟前
阿巴阿巴发布了新的文献求助30
2分钟前
子平完成签到 ,获得积分0
2分钟前
灵剑山完成签到 ,获得积分10
2分钟前
yf完成签到,获得积分10
2分钟前
Criminology34应助科研通管家采纳,获得30
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
千早爱音应助科研通管家采纳,获得20
3分钟前
思源应助研友_8RyzBZ采纳,获得10
3分钟前
3分钟前
Zefinity完成签到,获得积分10
3分钟前
3分钟前
3分钟前
研友_8RyzBZ发布了新的文献求助10
3分钟前
研友_8RyzBZ完成签到,获得积分20
3分钟前
卧镁铀钳完成签到 ,获得积分10
3分钟前
阿巴阿巴完成签到,获得积分10
3分钟前
3分钟前
外向的涛完成签到,获得积分10
4分钟前
4分钟前
张六六完成签到 ,获得积分10
4分钟前
千早爱音应助科研通管家采纳,获得20
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5302418
求助须知:如何正确求助?哪些是违规求助? 4449576
关于积分的说明 13848484
捐赠科研通 4335789
什么是DOI,文献DOI怎么找? 2380540
邀请新用户注册赠送积分活动 1375535
关于科研通互助平台的介绍 1341770