Development and validation of a model for predicting the risk of suicide in patients with cancer

毒物控制 人为因素与人体工程学 自杀预防 伤害预防 职业安全与健康 医学 癌症 医疗急救 内科学 病理
作者
Lin Du,Haiyan Shi,Yan Qian,Xiaohong Jin,Hairong Yu,Xue‐Lei Fu,Hua Wu,Hong‐Lin Chen
出处
期刊:Archives of Suicide Research [Informa]
卷期号:27 (2): 644-659 被引量:6
标识
DOI:10.1080/13811118.2022.2035289
摘要

The objective of this study was to establish a nomogram model to predict SI in patients with cancer and further evaluate its performance.This study was performed among 390 patients in oncology departments of Affiliated Hospital of Nantong University from April 2020 to January 2021. Of these, eligible patients who were diagnosed with cancer were split into training and validation cohorts according the ratio of 2:1 randomly. In the training cohort, multivariate regression was performed to determine the independent variables related to SI. A nomogram was built incorporating these variables. The model performance was evaluated by an independent validation cohort.The prevalence of SI in patients with cancer was 22.31% and 19.23% in training and validation cohorts, respectively. The nomogram model suggested independent variables for SI, including depression, emotional function, time after diagnosis, family function and educational status. The area under the curve (AUC) was 0.93 (95%CI, 0.90-0.97) and 0.82 (95%CI, 0.74-0.90) in training and validation cohorts respectively, which indicated good discrimination of the nomogram in predicting SI in cancer patients. The p-value of the goodness of fit (GOF) test was 0.197 and 0.974 in training and validation cohorts respectively, suggesting our nomogram model has acceptable calibration power, and the calibration curves further indicated good calibration power.In conclusion, the nomogram model for predicting individualized probability of SI could help clinical caregivers estimate the risk of SI in patients with cancer and provide appropriate management.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
简单的卿完成签到,获得积分10
刚刚
王誓言发布了新的文献求助10
刚刚
陌上之心发布了新的文献求助10
刚刚
菠萝吹雪发布了新的文献求助10
1秒前
1秒前
可爱觅松完成签到 ,获得积分10
1秒前
烟花应助勤劳樱采纳,获得10
2秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
ding应助全球免费科研1采纳,获得10
3秒前
4秒前
djxdjt完成签到,获得积分10
4秒前
光亮乘云完成签到,获得积分10
4秒前
5秒前
MARGARET完成签到,获得积分10
5秒前
lor完成签到,获得积分20
5秒前
圣诞节完成签到,获得积分10
6秒前
yy完成签到,获得积分10
6秒前
栀然完成签到,获得积分10
6秒前
爱吃肥牛完成签到,获得积分10
7秒前
張肉肉完成签到,获得积分10
7秒前
月月完成签到,获得积分10
8秒前
默默懿轩完成签到,获得积分10
8秒前
赵王关注了科研通微信公众号
8秒前
勤劳樱完成签到,获得积分10
8秒前
小阿哲完成签到 ,获得积分10
8秒前
虾皮相片完成签到,获得积分20
9秒前
Rui完成签到 ,获得积分10
9秒前
贤惠的饼干完成签到,获得积分10
9秒前
清飞应助啦啦啦采纳,获得10
9秒前
丘比特应助杰小瑞采纳,获得10
9秒前
lor发布了新的文献求助10
9秒前
gossie完成签到,获得积分10
9秒前
Mc摆摆源完成签到,获得积分20
9秒前
10秒前
菠萝吹雪完成签到,获得积分10
10秒前
10秒前
拼搏的飞薇完成签到,获得积分10
10秒前
Ava应助缓慢钢笔采纳,获得10
11秒前
在北极寻找食物的企鹅完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664967
求助须知:如何正确求助?哪些是违规求助? 4873787
关于积分的说明 15110464
捐赠科研通 4824067
什么是DOI,文献DOI怎么找? 2582622
邀请新用户注册赠送积分活动 1536541
关于科研通互助平台的介绍 1495147