已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A survey: Optimization and applications of evidence fusion algorithm based on Dempster–Shafer theory

登普斯特-沙弗理论 计算机科学 传感器融合 人工智能 集合(抽象数据类型) 算法 机器学习 数据挖掘 程序设计语言
作者
Kaiyi Zhao,Li Li,Zeqiu Chen,Ruizhi Sun,Gang Yuan,Jiayao Li
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:124: 109075-109075 被引量:77
标识
DOI:10.1016/j.asoc.2022.109075
摘要

Since Dempster–Shafer evidence theory was proposed, it has been widely and successfully used in many fields including risk analysis, fault diagnosis, wireless sensor networks, health prognosis, image processing, and target tracking, etc. However, many counter-intuitive results of data fusion will be obtained when evidence fused is highly conflicting. So far, this is still an open issue. To address this issue, many methods have been proposed, but they have not been comprehensively summarized in recent years. In this paper, a detailed survey is set forth about the optimization and application of evidence fusion algorithms based on Dempster–Shafer theory. Firstly, the principle of Dempster–Shafer evidence theory is introduced comprehensively. Then, the existing researches on modifying combination rule and pre-processed pieces of evidence to solve the counter-intuitive problem are reviewed in detail. Next, the performance of these studies is demonstrated, deeply analyzed, and discussed through experiments on general examples. And finally, the application of Dempster–Shafer evidence theory in different fields is critically summarized. What is more, analysis of the current status and the development trend of the research on evidence theory are concluded, which can provide a more comprehensive understanding of the development of the Dempster–Shafer evidence theory.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fffccclll完成签到,获得积分10
1秒前
P88JNG发布了新的文献求助10
2秒前
2秒前
HEIKU应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
3秒前
CipherSage应助科研通管家采纳,获得10
3秒前
天天快乐应助科研通管家采纳,获得10
3秒前
HEIKU应助科研通管家采纳,获得30
3秒前
3秒前
5秒前
gjy发布了新的文献求助10
7秒前
科研通AI2S应助LZN采纳,获得10
7秒前
luna完成签到,获得积分10
7秒前
小小发布了新的文献求助10
9秒前
10秒前
CodeCraft应助白小黑采纳,获得10
12秒前
12秒前
jwj发布了新的文献求助20
14秒前
16秒前
18秒前
畅快乐天完成签到,获得积分10
18秒前
112发布了新的文献求助10
18秒前
无限的忆山完成签到,获得积分10
18秒前
19秒前
东郭南珍发布了新的文献求助10
19秒前
21秒前
木槿发布了新的文献求助10
23秒前
HIMAWALI完成签到,获得积分10
23秒前
DoctorLee发布了新的文献求助10
23秒前
askaga发布了新的文献求助10
24秒前
所所应助王弈轩采纳,获得10
25秒前
26秒前
Bonnienuit完成签到 ,获得积分10
27秒前
28秒前
FashionBoy应助112采纳,获得10
28秒前
今后应助小小采纳,获得10
28秒前
医学牲完成签到,获得积分10
29秒前
Owen应助备备采纳,获得10
29秒前
衰神发布了新的文献求助10
30秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3307142
求助须知:如何正确求助?哪些是违规求助? 2940917
关于积分的说明 8499435
捐赠科研通 2615110
什么是DOI,文献DOI怎么找? 1428672
科研通“疑难数据库(出版商)”最低求助积分说明 663482
邀请新用户注册赠送积分活动 648355