生物粘附
体内
药品
离体
药物输送
食管
药理学
化学
体外
医学
内科学
生物化学
有机化学
生物技术
生物
作者
Yang Mai,Yaqi Ouyang,Yujia Qin,Changchang Jia,Laura E. McCoubrey,Abdul W. Basit,Yichu Nie,Yizhen Jia,Yu Liu,Dou Liu,Wenbin Deng,Yang Deng,Yang Liu
出处
期刊:Nanoscale
[The Royal Society of Chemistry]
日期:2022-01-01
卷期号:14 (23): 8418-8428
被引量:7
摘要
The effective treatment of esophageal disease represents a significant unmet clinical need, as existing treatments often lead to unnecessary systemic drug exposure and suboptimal concentrations at the disease site. Here, surface-modified bioadhesive poly(lactic acid)-hyperbranched polyglycerol nanoparticles (BNPs), with an average 100-200 nm diameter, were developed for local and sustained esophageal drug delivery. BNPs showed significantly higher adhesion and permeation into ex vivo human and rat esophageal tissue than non-adhesive nanoparticles (NNPs) and had longer residence times within the rat esophagus in vivo. Incubation with human esophagus (Het-1A) cells confirmed BNPs' biocompatibility at clinically relevant concentrations. In a rat model of achalasia, nifedipine-loaded BNPs significantly enhanced esophageal drug exposure, increased therapeutic efficacy, and reduced systemic drug exposure compared to NNPs and free drug. The safety of BNPs was demonstrated by an absence of intestinal, hepatic, and splenic toxicity following administration. This study is the first to demonstrate the efficacy of BNPs for esophageal drug delivery and highlight their potential for improving the lives of patients suffering with esophageal conditions.
科研通智能强力驱动
Strongly Powered by AbleSci AI