Development of a microfluidic droplet platform with an antibody-free magnetic-bead-based strategy for high through-put and efficient EVs isolation

微流控 化学 聚乙二醇 色谱法 PEG比率 磁性纳米粒子 毛细管电泳 细胞外小泡 纳米技术 试剂 微流控芯片 纳米颗粒 材料科学 物理化学 有机化学 财务 细胞生物学 经济 生物
作者
Marco Morani,Myriam Taverna,Zuzana Krupová,Lucile Alexandre,Pierre Defrenaix,Thanh Duc
出处
期刊:Talanta [Elsevier]
卷期号:249: 123625-123625 被引量:5
标识
DOI:10.1016/j.talanta.2022.123625
摘要

In this study, we present a novel microfluidic droplet-based strategy for high performance isolation of extracellular vesicles (EVs). For EVs capture and release, a magnetic bead-based approach without having recourse to any antibody was optimized in batch and then adapted to the microfluidic droplet system. This antibody-free capture approach relies on the presence of a water-excluding polymer, polyethylene glycol (PEG), to precipitate EVs on the surface of negatively charged magnetic beads. We significantly improved the reproducibility of EV recovery and avoided positive false bias by including a washing step and optimizing the protocol. Well-characterized EV standards derived from pre-purified bovine milk were used for EVs isolation performance evaluation. An EVs recovery of up to 25% estimated with nanoparticle tracking analysis (NTA) was achieved for this batchwise PEG-based approach. The confirmation of isolated EVs identity was also made with our recently developed method using capillary electrophoresis (CE) coupled with laser-induced fluorescent (LIF) detection. In parallel, a purpose-made droplet platform working with magnetic tweezers was developed for translation of this PEG-based method into a droplet microfluidic protocol to further improve the performance in terms of EVs capture efficiency and high throughput. The droplet-based protocol offers a significant improvement of recovery rate (up to 50%) while reducing sample and reagent volumes (by more than 10 folds) and operation time (by 3 folds) compared to the batch-wise mode.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高高问柳完成签到,获得积分10
刚刚
1秒前
外向的惜文完成签到,获得积分10
1秒前
ailemonmint完成签到 ,获得积分10
1秒前
haiwei完成签到,获得积分10
1秒前
1秒前
深情安青应助Dean采纳,获得10
2秒前
2秒前
2秒前
落霞发布了新的文献求助10
2秒前
悄悄睡觉完成签到 ,获得积分10
3秒前
xiaoyaoxiao99完成签到,获得积分10
3秒前
3秒前
阳光灵安应助kcccc采纳,获得10
4秒前
胡图图发布了新的文献求助10
5秒前
该饮茶了发布了新的文献求助10
5秒前
乖张发布了新的文献求助10
5秒前
小红发布了新的文献求助10
6秒前
6秒前
SinaiPen发布了新的文献求助10
6秒前
haiwei发布了新的文献求助10
6秒前
7秒前
7秒前
xzy发布了新的文献求助10
8秒前
所所应助void采纳,获得10
8秒前
SciGPT应助Shinewei采纳,获得10
9秒前
9秒前
学术人关注了科研通微信公众号
9秒前
Ava应助jsxxdr采纳,获得10
10秒前
trocars发布了新的文献求助20
10秒前
11秒前
11秒前
SinaiPen完成签到,获得积分20
11秒前
该饮茶了完成签到,获得积分10
12秒前
12秒前
12秒前
13秒前
任性白云完成签到,获得积分10
13秒前
阿坤发布了新的文献求助10
13秒前
水电费发布了新的文献求助10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Handbook on Inequality and Social Capital 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3547087
求助须知:如何正确求助?哪些是违规求助? 3124191
关于积分的说明 9358008
捐赠科研通 2822719
什么是DOI,文献DOI怎么找? 1551643
邀请新用户注册赠送积分活动 723580
科研通“疑难数据库(出版商)”最低求助积分说明 713825