Integrating a deep forest algorithm with vector‐based cellular automata for urban land change simulation

细胞自动机 计算机科学 相似性(几何) 比例(比率) 土地利用、土地利用的变化和林业 土地利用 人工智能 算法 数据挖掘
作者
Haoming Zhuang,Xiaoping Liu,Yuchao Yan,Dachuan Zhang,Jialyu He,Jinqiang He,Xinchang Zhang,Honghui Zhang,Manchun Li
出处
期刊:Transactions in Gis [Wiley]
标识
DOI:10.1111/tgis.12935
摘要

With the capacity to represent irregular geographical entities precisely, vector-based cellular automata (VCA) have been extensively employed in urban land change simulation at the land parcel level. However, while more driving factors are considered, modeling the complicated nonlinear relationship between land parcel attributes and multiple land-use changes is increasingly difficult. Moreover, in VCA, the driving factors are unstructured and cannot be directly modeled by traditional deep learning methods, which can only be applied to structured data processing. In order to address these problems, a new VCA model DF-VCA that adopts the deep forest (DF) algorithm for mining CA transition rules was proposed to simulate urban land-use change at the parcel level. The DF algorithm is a new deep learning method that can directly mine high-level features from unstructured data and obtain accurate land-use transition rules. The proposed DF-VCA model was applied to simulate the urban land change in Shenzhen, China. Compared with several traditional VCA models, the DF-VCA model achieved the best simulation performance at parcel-level (Figure of Merit = 39.88%), pattern-level (similarity = 96.47%), and community-level (correlation coefficient = 0.9269). The results show that the DF-VCA model with strong representative learning ability could simulate urban land change at fine scales precisely. Furthermore, the proposed DF-VCA model was applied in Shenzhen's future land change simulations to guide sustainable urban development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
媛媛完成签到 ,获得积分10
1秒前
跳跃幻儿发布了新的文献求助50
1秒前
zx完成签到,获得积分10
2秒前
调皮月饼完成签到 ,获得积分10
7秒前
zhang08完成签到,获得积分10
7秒前
星辰大海应助hao采纳,获得10
11秒前
小半完成签到,获得积分10
11秒前
卫珩完成签到 ,获得积分10
13秒前
乐乐应助Gilana采纳,获得10
14秒前
16秒前
许蓁蓁发布了新的文献求助10
20秒前
stefan完成签到,获得积分10
21秒前
跳跃幻儿完成签到,获得积分10
21秒前
21秒前
miaolingcool完成签到,获得积分10
24秒前
阿斯顿风格完成签到,获得积分10
25秒前
科研通AI2S应助缥缈嫣采纳,获得10
25秒前
27秒前
28秒前
29秒前
无奈曼云发布了新的文献求助10
31秒前
31秒前
hao发布了新的文献求助10
33秒前
hh完成签到 ,获得积分10
33秒前
额狐狸发布了新的文献求助10
34秒前
动听的面包完成签到,获得积分10
34秒前
hhhh完成签到,获得积分20
35秒前
LEE发布了新的文献求助10
36秒前
卡诺循环完成签到,获得积分10
37秒前
hao完成签到,获得积分10
38秒前
41秒前
Menand发布了新的文献求助30
41秒前
41秒前
隐形曼青应助Yang采纳,获得10
42秒前
42秒前
乐乐应助超级的三问采纳,获得10
43秒前
无奈曼云发布了新的文献求助10
45秒前
空白完成签到,获得积分10
47秒前
书雁发布了新的文献求助10
47秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
The late Devonian Standard Conodont Zonation 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Security Awareness: Applying Practical Cybersecurity in Your World 6th Edition 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3239694
求助须知:如何正确求助?哪些是违规求助? 2884943
关于积分的说明 8235991
捐赠科研通 2553120
什么是DOI,文献DOI怎么找? 1381389
科研通“疑难数据库(出版商)”最低求助积分说明 649228
邀请新用户注册赠送积分活动 624914