Integrating a deep forest algorithm with vector‐based cellular automata for urban land change simulation

细胞自动机 计算机科学 相似性(几何) 比例(比率) 土地利用、土地利用的变化和林业 土地利用 人工智能 算法 数据挖掘
作者
Haoming Zhuang,Xiaoping Liu,Yuchao Yan,Dachuan Zhang,Jialyu He,Jinqiang He,Xinchang Zhang,Honghui Zhang,Manchun Li
出处
期刊:Transactions in Gis [Wiley]
标识
DOI:10.1111/tgis.12935
摘要

With the capacity to represent irregular geographical entities precisely, vector-based cellular automata (VCA) have been extensively employed in urban land change simulation at the land parcel level. However, while more driving factors are considered, modeling the complicated nonlinear relationship between land parcel attributes and multiple land-use changes is increasingly difficult. Moreover, in VCA, the driving factors are unstructured and cannot be directly modeled by traditional deep learning methods, which can only be applied to structured data processing. In order to address these problems, a new VCA model DF-VCA that adopts the deep forest (DF) algorithm for mining CA transition rules was proposed to simulate urban land-use change at the parcel level. The DF algorithm is a new deep learning method that can directly mine high-level features from unstructured data and obtain accurate land-use transition rules. The proposed DF-VCA model was applied to simulate the urban land change in Shenzhen, China. Compared with several traditional VCA models, the DF-VCA model achieved the best simulation performance at parcel-level (Figure of Merit = 39.88%), pattern-level (similarity = 96.47%), and community-level (correlation coefficient = 0.9269). The results show that the DF-VCA model with strong representative learning ability could simulate urban land change at fine scales precisely. Furthermore, the proposed DF-VCA model was applied in Shenzhen's future land change simulations to guide sustainable urban development.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助like采纳,获得10
刚刚
钱春霞发布了新的文献求助10
1秒前
adb发布了新的文献求助10
2秒前
dsdingding完成签到,获得积分10
3秒前
深情安青应助YFW采纳,获得10
4秒前
kazuma发布了新的文献求助30
5秒前
斯文败类应助cabbage采纳,获得10
6秒前
6秒前
Qwe发布了新的文献求助10
8秒前
Twonej举报whynot求助涉嫌违规
10秒前
10秒前
11秒前
11秒前
jiali发布了新的文献求助10
11秒前
怦然发布了新的文献求助10
15秒前
qin123发布了新的文献求助10
15秒前
YFW发布了新的文献求助10
15秒前
cw完成签到,获得积分10
15秒前
16秒前
小心心鸭完成签到,获得积分10
18秒前
jiali完成签到,获得积分10
18秒前
CCC完成签到,获得积分10
19秒前
20秒前
20秒前
Tin完成签到 ,获得积分10
21秒前
cabbage发布了新的文献求助10
21秒前
22秒前
22秒前
22秒前
YFW完成签到,获得积分20
23秒前
23秒前
23秒前
Twonej应助含糊的靖柏采纳,获得10
24秒前
香芋完成签到,获得积分20
24秒前
25秒前
wangli发布了新的文献求助10
25秒前
prode完成签到 ,获得积分10
26秒前
木子李发布了新的文献求助10
28秒前
cabbage完成签到,获得积分10
29秒前
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5737437
求助须知:如何正确求助?哪些是违规求助? 5372472
关于积分的说明 15335484
捐赠科研通 4880930
什么是DOI,文献DOI怎么找? 2623186
邀请新用户注册赠送积分活动 1571999
关于科研通互助平台的介绍 1528811