Toward Data-Driven STAP Radar

计算机科学 雷达 人工智能 雷达成像 卷积神经网络 计算机视觉 空时自适应处理 目标检测 深度学习 模式识别(心理学) 连续波雷达 电信
作者
Shyam Venkatasubramanian,Chayut Wongkamthong,Mohammadreza Soltani,Bosung Kang,Sandeep Gogineni,Ali Pezeshki,Muralidhar Rangaswamy,Vahid Tarokh
标识
DOI:10.1109/radarconf2248738.2022.9764354
摘要

Using an amalgamation of techniques from classical radar, computer vision, and deep learning, we characterize our ongoing data-driven approach to space-time adaptive processing (STAP) radar. We generate a rich example dataset of received radar signals by randomly placing targets of variable strengths in a predetermined region using RFView, a site-specific radio frequency modeling and simulation tool developed by ISL Inc. For each data sample within this region, we generate heatmap tensors in range, azimuth, and elevation of the output power of a minimum variance distortionless response (MVDR) beamformer, which can be replaced with a desired test statistic. These heatmap tensors can be thought of as stacked images, and in an airborne scenario, the moving radar creates a sequence of these time-indexed image stacks, resembling a video. Our goal is to use these images and videos to detect targets and estimate their locations, a procedure reminiscent of computer vision algorithms for object detection-namely, the Faster Region Based Convolutional Neural Network (Faster R-CNN). The Faster R-CNN consists of a proposal generating network for determining regions of interest (ROI), a regression network for positioning anchor boxes around targets, and an object classification algorithm; it is developed and optimized for natural images. Our ongoing research will develop analogous tools for heatmap images of radar data. In this regard, we will generate a large, representative adaptive radar signal processing database for training and testing, analogous in spirit to the COCO dataset for natural images. Subsequently, we will build upon, adapt, and optimize the existing Faster R-CNN framework, and develop tools to detect and localize targets in the heatmap tensors discussed previously. As a preliminary example, we present a regression network in this paper for estimating target locations to demonstrate the feasibility of and significant improvements provided by our data-driven approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
细心寒凡完成签到 ,获得积分10
刚刚
小羊睡不着数什么完成签到 ,获得积分10
刚刚
1秒前
背后访风发布了新的文献求助10
3秒前
6秒前
细腻新筠完成签到,获得积分10
7秒前
yumi完成签到,获得积分10
7秒前
星星泡饭完成签到,获得积分10
8秒前
乐乐应助一一采纳,获得10
9秒前
胡图完成签到,获得积分10
10秒前
李爱国应助xx采纳,获得10
10秒前
星星泡饭发布了新的文献求助10
12秒前
13秒前
3263255完成签到,获得积分20
15秒前
15秒前
17秒前
Orange应助meng采纳,获得10
18秒前
诗555完成签到 ,获得积分10
18秒前
清冽草木风完成签到,获得积分10
19秒前
3263255发布了新的文献求助10
19秒前
123完成签到 ,获得积分10
19秒前
duoduo完成签到,获得积分10
21秒前
水煮蛋发布了新的文献求助10
23秒前
25秒前
26秒前
27秒前
GEOPYJ完成签到,获得积分10
29秒前
呆萌安青完成签到 ,获得积分10
31秒前
33秒前
meng发布了新的文献求助10
34秒前
喜悦的尔阳完成签到,获得积分10
35秒前
夏天呀完成签到,获得积分10
36秒前
Tal完成签到,获得积分10
39秒前
嘻嘻哈哈完成签到 ,获得积分10
40秒前
ccc完成签到 ,获得积分10
42秒前
小丫头大傻妞完成签到 ,获得积分10
44秒前
科研通AI2S应助科研通管家采纳,获得10
45秒前
45秒前
qing_he应助D4采纳,获得20
45秒前
犹豫机器猫完成签到,获得积分10
46秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3163007
求助须知:如何正确求助?哪些是违规求助? 2813990
关于积分的说明 7902812
捐赠科研通 2473633
什么是DOI,文献DOI怎么找? 1316952
科研通“疑难数据库(出版商)”最低求助积分说明 631560
版权声明 602187