Pavement crack detection algorithm based on generative adversarial network and convolutional neural network under small samples

卷积神经网络 计算机科学 人工智能 生成对抗网络 数据集 集合(抽象数据类型) 试验装置 样品(材料) 模式识别(心理学) 人工神经网络 学习迁移 试验数据 深度学习 班级(哲学) 对抗制 训练集 数据挖掘 化学 色谱法 程序设计语言
作者
Boqiang Xu,Chao Liu
出处
期刊:Measurement [Elsevier BV]
卷期号:196: 111219-111219 被引量:30
标识
DOI:10.1016/j.measurement.2022.111219
摘要

Pavement crack detection methods based on deep learning and computer vision can greatly improve detection efficiency and accuracy, but in many cases the data in training set is lacking or uneven, making it insufficient to train an accurate detection model. This paper proposes a detection method under small samples, which is composed of two steps. First, with a generative adversarial network (GAN) constructed, the small sample data set of pavement cracks taken by unmanned aerial vehicle (UAV) is used as the training set and the GAN model is trained. The best trained model is used for generation of new images. Second, original small-sample data set is expanded by images generated by the GAN model, and a convolutional neural network (CNN) model is constructed at the same time. Then, data set before and after the expansion is trained and tested by the method of transfer learning to verify the effectiveness of expanded data separately. It has been proved that, compared with the unexpanded data set, CNN model trained after expansion improves the test set detection accuracy from 80.75% to 91.61%, which is regarded as a significant improvement. In addition, this paper also uses class activation map (CAM) to visually evaluate CNN model, and expands the detection ability of classification model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
寒冷书竹发布了新的文献求助10
1秒前
xushanqi发布了新的文献求助10
1秒前
yang发布了新的文献求助10
1秒前
呃呃完成签到,获得积分10
1秒前
Hannah17完成签到,获得积分20
1秒前
热爱学习发布了新的文献求助10
1秒前
斯文败类应助一路向北被采纳,获得10
1秒前
脑洞疼应助德川可可采纳,获得10
2秒前
很多话完成签到,获得积分10
2秒前
李爱国应助陈宇蛟采纳,获得10
2秒前
2秒前
2秒前
3秒前
环秋发布了新的文献求助10
3秒前
迫切发布了新的文献求助10
4秒前
111驳回了大个应助
4秒前
很多话发布了新的文献求助10
4秒前
4秒前
充电宝应助麦冬采纳,获得30
5秒前
6秒前
和谐一万发布了新的文献求助10
7秒前
ddcc发布了新的文献求助10
7秒前
7秒前
顺利如柏发布了新的文献求助30
7秒前
伶俐耷完成签到,获得积分10
7秒前
小海发布了新的文献求助10
9秒前
Akim应助haung采纳,获得10
9秒前
9秒前
wss完成签到,获得积分10
10秒前
布洛芬完成签到,获得积分10
10秒前
天赐殊荣发布了新的文献求助10
11秒前
李小木子完成签到,获得积分10
11秒前
姜姜发布了新的文献求助10
12秒前
李健应助坚强幼晴采纳,获得10
13秒前
环秋完成签到,获得积分10
13秒前
123完成签到,获得积分10
13秒前
Somnus发布了新的文献求助10
13秒前
13秒前
baomingqiu发布了新的文献求助10
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951583
求助须知:如何正确求助?哪些是违规求助? 3496980
关于积分的说明 11085596
捐赠科研通 3227413
什么是DOI,文献DOI怎么找? 1784413
邀请新用户注册赠送积分活动 868495
科研通“疑难数据库(出版商)”最低求助积分说明 801154