Radiomic Analysis of Pulmonary Nodules for Distinguishing Malignancy From Benignancy: The Value of Using Iodine Maps From Dual-Energy Computed Tomography

医学 无线电技术 接收机工作特性 放射科 核医学 恶性肿瘤 回顾性队列研究 病理 内科学 冶金 材料科学
作者
Yan Zhong,Hai Xu,Wei Zhang,Hai Li,Tongfu Yu,Mei Yuan
出处
期刊:Journal of Computer Assisted Tomography [Ovid Technologies (Wolters Kluwer)]
标识
DOI:10.1097/rct.0000000000001360
摘要

The aim of the study is to investigate the diagnostic accuracy of radiomics on iodine maps from dual-energy computed tomography (DECT) in distinguishing lung cancer from benign pulmonary nodules.This retrospective study was approved by the institutional review board, and written informed consent was waived. A total of 109 patients with 55 malignant nodules and 62 benign nodules underwent contrast-enhanced DECT. Eight iodine uptake parameters on iodine maps generated by DECT were calculated and established a predictive model. Eighty-seven radiomics features of entire tumor were extracted from iodine maps and established a radiomics model. The iodine uptake model and radiomics model were independently built based on the highly reproducible features using the least absolute shrinkage and selection operator method. The diagnostic accuracy of 2 models were assessed using receiver operating curve analysis. For external validation, 47 patients (25 benign and 22 malignant) from another hospital were assigned to testing data set.All iodine uptake features showed significant association with malignancy ( P < 0.01) and 2 selected features (mean value of virtual noncontrast images and mean value of vital part on contrast-enhanced image) constituted the iodine model. The radiomics model comprised 2 features (original shape sphericity and original glszm small area high gray level emphasis), which showed good discrimination both in the training cohort (area under the curve, 0.957) and validation cohort (area under the curve, 0.800). Radiomics model showed superior performance than iodine uptake model (accuracy, 89.7% vs 80.6%).Radiomics model extracted from iodine maps provided a robust diagnostic tool for discriminating pulmonary malignant nodules and had high potential in clinical application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
杨倩发布了新的文献求助10
2秒前
2秒前
3秒前
bxdrl发布了新的文献求助10
3秒前
wang发布了新的文献求助10
4秒前
烟花应助诚心代芙采纳,获得10
5秒前
5秒前
传奇3应助lhlhl采纳,获得10
5秒前
6秒前
6秒前
媛肖完成签到 ,获得积分10
7秒前
7秒前
Aypnia完成签到,获得积分10
8秒前
星辰大海应助趣味生煎采纳,获得10
8秒前
SciGPT应助jason采纳,获得10
8秒前
bxdrl完成签到,获得积分20
9秒前
呐呐呐发布了新的文献求助20
9秒前
Orange应助阿豪采纳,获得10
9秒前
勤奋的野狼完成签到,获得积分10
10秒前
Aypnia发布了新的文献求助10
10秒前
完美世界应助可靠的寒风采纳,获得10
10秒前
谷云发布了新的文献求助10
10秒前
10秒前
靓丽三德发布了新的文献求助50
11秒前
12秒前
ayuan发布了新的文献求助10
12秒前
Chen发布了新的文献求助10
13秒前
www发布了新的文献求助10
13秒前
13秒前
科研通AI6应助Eliauk采纳,获得10
13秒前
克里斯蒂娜完成签到,获得积分10
13秒前
小猴子应助xzh采纳,获得10
14秒前
冷艳念真完成签到,获得积分10
14秒前
充电宝应助魔幻灵煌采纳,获得10
14秒前
bdJ发布了新的文献求助10
15秒前
herococa应助洛丹伦的夏采纳,获得10
15秒前
Shubin828发布了新的文献求助10
16秒前
16秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5649011
求助须知:如何正确求助?哪些是违规求助? 4777097
关于积分的说明 15046363
捐赠科研通 4807843
什么是DOI,文献DOI怎么找? 2571160
邀请新用户注册赠送积分活动 1527756
关于科研通互助平台的介绍 1486683