Risk factors and prognostic nomogram for patients with second primary cancers after lung cancer using classical statistics and machine learning

列线图 医学 比例危险模型 肿瘤科 肺癌 内科学 机器学习 人工智能 计算机科学
作者
Lianxiang Luo,Hao-Wen Lin,Jiahui Huang,Baixin Lin,Fangfang Huang,Hui Luo
出处
期刊:Clinical and Experimental Medicine [Springer Nature]
卷期号:23 (5): 1609-1620 被引量:4
标识
DOI:10.1007/s10238-022-00858-5
摘要

Previous studies have revealed an increased risk of secondary primary cancers (SPC) after lung cancer. The prognostic prediction models for SPC patients after lung cancer are particularly needed to guide screening. Therefore, we study retrospectively analyzed the Surveillance, Epidemiology, and End Results (SEER) database using classical statistics and machine learning to explore the risk factors and construct a novel overall survival (OS) prediction nomogram for patients with SPC after lung cancer. Data of patients with SPC after lung cancer, covering 2000 to 2016, were gathered from the SEER database. The incidence of SPC after lung cancer was calculated by Standardized incidence ratios (SIRs). Cox proportional hazards regression, machine learning (ML), Kaplan–Meier (KM) methods, and log-rank tests were conducted to identify the important prognostic factors for predicting OS. These significant prognostic factors were used for the development of an OS prediction nomogram. Totally, 10,487 SPC samples were randomly divided into training and validation cohorts (model construction and internal validation) from the SEER database. In the random forest (RF) and extreme gradient boosting (XGBoost) feature importance ranking models, age was the most important variable which was also reflected in the nomogram. And, the models that combined machine learning with cox proportional hazards had a better predictive performance than the model that only used cox proportional hazards (AUC = 0.762 in RF, AUC = 0.737 in XGBoost, AUC = 0.722 in COX). Calibration curves and decision curve analysis (DCA) curves also revealed that our nomogram has excellent clinical utility. The web-based dynamic nomogram calculator was accessible on https://httseer.shinyapps.io/DynNomapp/ . The prognosis characteristics of SPC following lung cancer were systematically reviewed. The dynamic nomogram we constructed can provide survival predictions to assist clinicians in making individualized decisions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助鳗鱼鞋垫采纳,获得10
刚刚
刚刚
wwy完成签到,获得积分10
1秒前
南城雨落发布了新的文献求助10
1秒前
1秒前
1秒前
ladyguagua发布了新的文献求助10
1秒前
宗岩完成签到 ,获得积分10
1秒前
2秒前
极度疯狂完成签到,获得积分10
2秒前
183完成签到,获得积分10
2秒前
4秒前
共享精神应助默默幼南采纳,获得10
4秒前
如初完成签到,获得积分10
5秒前
li发布了新的文献求助10
5秒前
香蕉觅云应助雪白的西牛采纳,获得10
5秒前
7秒前
ladyguagua完成签到,获得积分10
7秒前
艺阳完成签到,获得积分10
7秒前
re应助fafafa采纳,获得10
7秒前
思源应助池鲤采纳,获得10
8秒前
田様应助www111采纳,获得10
8秒前
善学以致用应助Franky采纳,获得10
8秒前
夏鸢完成签到 ,获得积分10
8秒前
星空孤独完成签到,获得积分10
8秒前
8秒前
情怀应助自然绣连采纳,获得10
8秒前
8秒前
冷静帅哥发布了新的文献求助30
9秒前
10秒前
赵怡然完成签到,获得积分10
10秒前
让我水两篇吧完成签到,获得积分10
10秒前
小聂每天都想毕业啊啊啊完成签到,获得积分20
10秒前
咕咕嘎嘎完成签到,获得积分10
10秒前
卓头OvQ发布了新的文献求助20
11秒前
11秒前
万能图书馆应助静静采纳,获得10
11秒前
Georges-09发布了新的文献求助10
12秒前
13秒前
再睡十分钟完成签到 ,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5653573
求助须知:如何正确求助?哪些是违规求助? 4790162
关于积分的说明 15064753
捐赠科研通 4812180
什么是DOI,文献DOI怎么找? 2574341
邀请新用户注册赠送积分活动 1529955
关于科研通互助平台的介绍 1488680