清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Risk factors and prognostic nomogram for patients with second primary cancers after lung cancer using classical statistics and machine learning

列线图 医学 比例危险模型 肿瘤科 肺癌 内科学 机器学习 人工智能 计算机科学
作者
Lianxiang Luo,Hao-Wen Lin,Jiahui Huang,Baixin Lin,Fangfang Huang,Hui Luo
出处
期刊:Clinical and Experimental Medicine [Springer Nature]
卷期号:23 (5): 1609-1620 被引量:4
标识
DOI:10.1007/s10238-022-00858-5
摘要

Previous studies have revealed an increased risk of secondary primary cancers (SPC) after lung cancer. The prognostic prediction models for SPC patients after lung cancer are particularly needed to guide screening. Therefore, we study retrospectively analyzed the Surveillance, Epidemiology, and End Results (SEER) database using classical statistics and machine learning to explore the risk factors and construct a novel overall survival (OS) prediction nomogram for patients with SPC after lung cancer. Data of patients with SPC after lung cancer, covering 2000 to 2016, were gathered from the SEER database. The incidence of SPC after lung cancer was calculated by Standardized incidence ratios (SIRs). Cox proportional hazards regression, machine learning (ML), Kaplan–Meier (KM) methods, and log-rank tests were conducted to identify the important prognostic factors for predicting OS. These significant prognostic factors were used for the development of an OS prediction nomogram. Totally, 10,487 SPC samples were randomly divided into training and validation cohorts (model construction and internal validation) from the SEER database. In the random forest (RF) and extreme gradient boosting (XGBoost) feature importance ranking models, age was the most important variable which was also reflected in the nomogram. And, the models that combined machine learning with cox proportional hazards had a better predictive performance than the model that only used cox proportional hazards (AUC = 0.762 in RF, AUC = 0.737 in XGBoost, AUC = 0.722 in COX). Calibration curves and decision curve analysis (DCA) curves also revealed that our nomogram has excellent clinical utility. The web-based dynamic nomogram calculator was accessible on https://httseer.shinyapps.io/DynNomapp/ . The prognosis characteristics of SPC following lung cancer were systematically reviewed. The dynamic nomogram we constructed can provide survival predictions to assist clinicians in making individualized decisions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
感动初蓝完成签到 ,获得积分10
4秒前
科研通AI6应助Yportne采纳,获得10
8秒前
李健的小迷弟应助Gryphon采纳,获得30
9秒前
35秒前
无与伦比完成签到 ,获得积分10
45秒前
敞敞亮亮完成签到 ,获得积分10
48秒前
49秒前
Gryphon发布了新的文献求助30
53秒前
善学以致用应助Raunio采纳,获得10
1分钟前
俊逸吐司完成签到 ,获得积分10
1分钟前
2分钟前
poki完成签到 ,获得积分10
2分钟前
BowieHuang应助科研通管家采纳,获得10
3分钟前
Alisha完成签到,获得积分10
3分钟前
爱喝红茶完成签到,获得积分10
3分钟前
3分钟前
RC发布了新的文献求助10
3分钟前
隐形曼青应助RC采纳,获得10
3分钟前
研友_8KKkb8发布了新的文献求助10
3分钟前
wangfaqing942完成签到 ,获得积分10
4分钟前
BowieHuang应助科研通管家采纳,获得10
5分钟前
5分钟前
5分钟前
RC发布了新的文献求助10
5分钟前
老石完成签到 ,获得积分10
5分钟前
方白秋完成签到,获得积分0
5分钟前
6分钟前
洗衣液谢完成签到 ,获得积分10
6分钟前
Yportne发布了新的文献求助10
6分钟前
Yportne完成签到,获得积分10
6分钟前
阳光的丹雪完成签到,获得积分10
6分钟前
哭泣灯泡完成签到,获得积分10
6分钟前
情怀应助科研通管家采纳,获得10
7分钟前
BowieHuang应助科研通管家采纳,获得10
7分钟前
BowieHuang应助科研通管家采纳,获得10
7分钟前
BowieHuang应助科研通管家采纳,获得10
7分钟前
7分钟前
7分钟前
邢契发布了新的文献求助10
7分钟前
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590577
求助须知:如何正确求助?哪些是违规求助? 4674818
关于积分的说明 14795392
捐赠科研通 4633677
什么是DOI,文献DOI怎么找? 2532838
邀请新用户注册赠送积分活动 1501328
关于科研通互助平台的介绍 1468733