Risk factors and prognostic nomogram for patients with second primary cancers after lung cancer using classical statistics and machine learning

列线图 医学 比例危险模型 肿瘤科 肺癌 内科学 机器学习 人工智能 计算机科学
作者
Lianxiang Luo,Hao-Wen Lin,Jiahui Huang,Baixin Lin,Fangfang Huang,Hui Luo
出处
期刊:Clinical and Experimental Medicine [Springer Nature]
卷期号:23 (5): 1609-1620 被引量:4
标识
DOI:10.1007/s10238-022-00858-5
摘要

Previous studies have revealed an increased risk of secondary primary cancers (SPC) after lung cancer. The prognostic prediction models for SPC patients after lung cancer are particularly needed to guide screening. Therefore, we study retrospectively analyzed the Surveillance, Epidemiology, and End Results (SEER) database using classical statistics and machine learning to explore the risk factors and construct a novel overall survival (OS) prediction nomogram for patients with SPC after lung cancer. Data of patients with SPC after lung cancer, covering 2000 to 2016, were gathered from the SEER database. The incidence of SPC after lung cancer was calculated by Standardized incidence ratios (SIRs). Cox proportional hazards regression, machine learning (ML), Kaplan–Meier (KM) methods, and log-rank tests were conducted to identify the important prognostic factors for predicting OS. These significant prognostic factors were used for the development of an OS prediction nomogram. Totally, 10,487 SPC samples were randomly divided into training and validation cohorts (model construction and internal validation) from the SEER database. In the random forest (RF) and extreme gradient boosting (XGBoost) feature importance ranking models, age was the most important variable which was also reflected in the nomogram. And, the models that combined machine learning with cox proportional hazards had a better predictive performance than the model that only used cox proportional hazards (AUC = 0.762 in RF, AUC = 0.737 in XGBoost, AUC = 0.722 in COX). Calibration curves and decision curve analysis (DCA) curves also revealed that our nomogram has excellent clinical utility. The web-based dynamic nomogram calculator was accessible on https://httseer.shinyapps.io/DynNomapp/ . The prognosis characteristics of SPC following lung cancer were systematically reviewed. The dynamic nomogram we constructed can provide survival predictions to assist clinicians in making individualized decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
熊大发布了新的文献求助10
刚刚
4秒前
科目三应助科研通管家采纳,获得10
4秒前
烟花应助科研通管家采纳,获得10
4秒前
我是老大应助科研通管家采纳,获得20
4秒前
星辰大海应助科研通管家采纳,获得10
4秒前
bkagyin应助科研通管家采纳,获得10
4秒前
学业繁忙完成签到,获得积分10
5秒前
万能图书馆应助伈X采纳,获得10
6秒前
茉莉清茶关注了科研通微信公众号
6秒前
hkh发布了新的文献求助10
8秒前
Emma应助科研顺利采纳,获得10
8秒前
忽然长大完成签到,获得积分10
9秒前
10秒前
TKMY发布了新的文献求助10
10秒前
开心夜云完成签到 ,获得积分10
14秒前
15秒前
zzjiay发布了新的文献求助10
15秒前
17秒前
华仔应助baolongzhan采纳,获得10
17秒前
外星人发布了新的文献求助30
20秒前
善学以致用应助YZ采纳,获得10
20秒前
爆米花应助kingripple采纳,获得10
21秒前
22秒前
24秒前
chenyh应助nini采纳,获得10
24秒前
椿·完成签到 ,获得积分10
24秒前
小二郎应助咖喱鸡采纳,获得10
25秒前
陈淑玲完成签到,获得积分10
25秒前
baolongzhan发布了新的文献求助10
28秒前
伈X发布了新的文献求助10
28秒前
科研通AI2S应助ganchao1776采纳,获得10
28秒前
标致凡白完成签到,获得积分10
31秒前
31秒前
忽忽完成签到,获得积分10
32秒前
科目三应助小仙女采纳,获得10
33秒前
CodeCraft应助zhouleiwang采纳,获得10
33秒前
33秒前
33秒前
baolongzhan完成签到,获得积分10
34秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
中国氢能技术发展路线图研究 500
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3168356
求助须知:如何正确求助?哪些是违规求助? 2819704
关于积分的说明 7927634
捐赠科研通 2479614
什么是DOI,文献DOI怎么找? 1321024
科研通“疑难数据库(出版商)”最低求助积分说明 632946
版权声明 602460