已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Risk factors and prognostic nomogram for patients with second primary cancers after lung cancer using classical statistics and machine learning

列线图 医学 比例危险模型 肿瘤科 肺癌 内科学 机器学习 人工智能 计算机科学
作者
Lianxiang Luo,Hao-Wen Lin,Jiahui Huang,Baixin Lin,Fangfang Huang,Hui Luo
出处
期刊:Clinical and Experimental Medicine [Springer Nature]
卷期号:23 (5): 1609-1620 被引量:4
标识
DOI:10.1007/s10238-022-00858-5
摘要

Previous studies have revealed an increased risk of secondary primary cancers (SPC) after lung cancer. The prognostic prediction models for SPC patients after lung cancer are particularly needed to guide screening. Therefore, we study retrospectively analyzed the Surveillance, Epidemiology, and End Results (SEER) database using classical statistics and machine learning to explore the risk factors and construct a novel overall survival (OS) prediction nomogram for patients with SPC after lung cancer. Data of patients with SPC after lung cancer, covering 2000 to 2016, were gathered from the SEER database. The incidence of SPC after lung cancer was calculated by Standardized incidence ratios (SIRs). Cox proportional hazards regression, machine learning (ML), Kaplan–Meier (KM) methods, and log-rank tests were conducted to identify the important prognostic factors for predicting OS. These significant prognostic factors were used for the development of an OS prediction nomogram. Totally, 10,487 SPC samples were randomly divided into training and validation cohorts (model construction and internal validation) from the SEER database. In the random forest (RF) and extreme gradient boosting (XGBoost) feature importance ranking models, age was the most important variable which was also reflected in the nomogram. And, the models that combined machine learning with cox proportional hazards had a better predictive performance than the model that only used cox proportional hazards (AUC = 0.762 in RF, AUC = 0.737 in XGBoost, AUC = 0.722 in COX). Calibration curves and decision curve analysis (DCA) curves also revealed that our nomogram has excellent clinical utility. The web-based dynamic nomogram calculator was accessible on https://httseer.shinyapps.io/DynNomapp/ . The prognosis characteristics of SPC following lung cancer were systematically reviewed. The dynamic nomogram we constructed can provide survival predictions to assist clinicians in making individualized decisions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
2秒前
cfplhys发布了新的文献求助10
3秒前
动听衬衫发布了新的文献求助10
4秒前
dinghongmei发布了新的文献求助10
5秒前
Rose_Yang发布了新的文献求助10
6秒前
7秒前
7秒前
8秒前
voifhpg发布了新的文献求助10
8秒前
科研通AI2S应助标致的问晴采纳,获得10
8秒前
8秒前
悦果完成签到 ,获得积分10
10秒前
GG完成签到,获得积分10
11秒前
戈惜完成签到 ,获得积分10
11秒前
yuanyuan发布了新的文献求助10
12秒前
柯曼云发布了新的文献求助10
13秒前
林较瘦完成签到,获得积分10
13秒前
科研通AI6应助好久不见采纳,获得10
13秒前
小小发布了新的文献求助10
13秒前
刘歌发布了新的文献求助10
14秒前
14秒前
Neil发布了新的文献求助30
15秒前
华仔应助洁净的千凡采纳,获得10
17秒前
ok完成签到,获得积分10
18秒前
呆萌的雁桃完成签到,获得积分10
19秒前
柯曼云完成签到,获得积分10
23秒前
丘比特应助小小采纳,获得10
23秒前
优美的冰巧完成签到 ,获得积分10
24秒前
Vaibhav发布了新的文献求助10
25秒前
刘蕊完成签到,获得积分20
26秒前
深情安青应助dinghongmei采纳,获得10
26秒前
0000完成签到 ,获得积分10
28秒前
yuanyuan完成签到,获得积分10
28秒前
movoandy发布了新的文献求助10
28秒前
在水一方应助勤奋的听枫采纳,获得10
29秒前
29秒前
cfplhys完成签到,获得积分10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5627458
求助须知:如何正确求助?哪些是违规求助? 4713928
关于积分的说明 14962390
捐赠科研通 4784838
什么是DOI,文献DOI怎么找? 2554884
邀请新用户注册赠送积分活动 1516380
关于科研通互助平台的介绍 1476702