Risk factors and prognostic nomogram for patients with second primary cancers after lung cancer using classical statistics and machine learning

列线图 医学 比例危险模型 肿瘤科 肺癌 内科学 机器学习 人工智能 计算机科学
作者
Lianxiang Luo,Hao-Wen Lin,Jiahui Huang,Baixin Lin,Fangfang Huang,Hui Luo
出处
期刊:Clinical and Experimental Medicine [Springer Nature]
卷期号:23 (5): 1609-1620 被引量:4
标识
DOI:10.1007/s10238-022-00858-5
摘要

Previous studies have revealed an increased risk of secondary primary cancers (SPC) after lung cancer. The prognostic prediction models for SPC patients after lung cancer are particularly needed to guide screening. Therefore, we study retrospectively analyzed the Surveillance, Epidemiology, and End Results (SEER) database using classical statistics and machine learning to explore the risk factors and construct a novel overall survival (OS) prediction nomogram for patients with SPC after lung cancer. Data of patients with SPC after lung cancer, covering 2000 to 2016, were gathered from the SEER database. The incidence of SPC after lung cancer was calculated by Standardized incidence ratios (SIRs). Cox proportional hazards regression, machine learning (ML), Kaplan–Meier (KM) methods, and log-rank tests were conducted to identify the important prognostic factors for predicting OS. These significant prognostic factors were used for the development of an OS prediction nomogram. Totally, 10,487 SPC samples were randomly divided into training and validation cohorts (model construction and internal validation) from the SEER database. In the random forest (RF) and extreme gradient boosting (XGBoost) feature importance ranking models, age was the most important variable which was also reflected in the nomogram. And, the models that combined machine learning with cox proportional hazards had a better predictive performance than the model that only used cox proportional hazards (AUC = 0.762 in RF, AUC = 0.737 in XGBoost, AUC = 0.722 in COX). Calibration curves and decision curve analysis (DCA) curves also revealed that our nomogram has excellent clinical utility. The web-based dynamic nomogram calculator was accessible on https://httseer.shinyapps.io/DynNomapp/ . The prognosis characteristics of SPC following lung cancer were systematically reviewed. The dynamic nomogram we constructed can provide survival predictions to assist clinicians in making individualized decisions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
weixiao发布了新的文献求助10
2秒前
贪玩灵松发布了新的文献求助10
2秒前
维C完成签到 ,获得积分10
2秒前
3秒前
weihongjuan发布了新的文献求助10
3秒前
3秒前
乱泽华完成签到 ,获得积分10
3秒前
恬恬完成签到,获得积分10
5秒前
ECT完成签到,获得积分10
6秒前
慕青应助董卓小蛮腰采纳,获得10
7秒前
8秒前
科研通AI6应助wz采纳,获得10
9秒前
9秒前
香蕉觅云应助Lucien采纳,获得30
9秒前
9秒前
9秒前
10秒前
Xavier完成签到,获得积分20
10秒前
Criminology34应助海子采纳,获得10
10秒前
11秒前
大白菜完成签到,获得积分10
11秒前
再见一日完成签到,获得积分10
11秒前
11秒前
12秒前
DY完成签到,获得积分0
12秒前
12秒前
ting_jiang完成签到,获得积分10
13秒前
philipa完成签到,获得积分10
13秒前
13秒前
何安发布了新的文献求助10
14秒前
Orange应助松尐采纳,获得10
14秒前
ning完成签到,获得积分10
14秒前
majf发布了新的文献求助10
14秒前
沉默的行云完成签到,获得积分20
15秒前
strongfrog发布了新的文献求助10
15秒前
大模型应助12138采纳,获得10
16秒前
圆子发布了新的文献求助10
17秒前
17秒前
豆本豆发布了新的文献求助10
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608315
求助须知:如何正确求助?哪些是违规求助? 4692918
关于积分的说明 14876115
捐赠科研通 4717325
什么是DOI,文献DOI怎么找? 2544189
邀请新用户注册赠送积分活动 1509187
关于科研通互助平台的介绍 1472836