Multiscale Low-Light Image Enhancement Network With Illumination Constraint

计算机科学 人工智能 计算机视觉 约束(计算机辅助设计) 图像(数学) 图像处理 图像分割 数学 几何学
作者
Guodong Fan,Bi Fan,Min Gan,Guangyong Chen,C. L. Philip Chen
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:32 (11): 7403-7417 被引量:76
标识
DOI:10.1109/tcsvt.2022.3186880
摘要

Images captured under low-light environments typically have poor visibility, affecting many advanced computer vision tasks. In recent years, there have been some low-light image enhancement models based on deep learning, but they have not been able to effectively mine the deep multiscale features in the image, resulting in poor generalization performance and instability of the model. The disadvantages are mainly reflected in the color distortion, color unsaturation and artifacts. Current methods unable to adjust the exposure effectively, resulting in uneven exposure or partial overexposure. To address these issues, we propose an end-to-end low-light image enhancement model, which is called multiscale low-light image enhancement network with illumination constraint (MLLEN-IC), to achieve preferable generalization ability and stable performance. On the one hand, we use the squeeze-and-excitation-Res2Net block (SE-Res2block) as a base unit to enhance the model's ability by extracting deep multiscale features. On the other hand, to make the model more adaptable in low-light image enhancement tasks, we calculate the illumination constraint by the low-light itself to prevent overexposure, uneven exposure, and unsaturated colors. Extensive experiments are conducted to demonstrate MLLEN-IC not only adjusts light levels, but also has a more natural visual effect, and avoids problems such as color distortion, artifacts, and uneven exposure. In particular, MLLEN-IC has pretty generalization and stability performance. The source code and supplementary are available at https://github.com/CCECfgd/MLLEN-IC .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
SigRosa完成签到,获得积分10
1秒前
1秒前
Akim应助simon采纳,获得10
1秒前
文静的谷菱完成签到,获得积分10
1秒前
1秒前
番茄发布了新的文献求助10
1秒前
顾矜应助WEnyu采纳,获得10
2秒前
自由的厉完成签到 ,获得积分10
2秒前
2秒前
123完成签到,获得积分10
2秒前
2秒前
拉长的湘完成签到,获得积分10
3秒前
科研通AI2S应助butaishao采纳,获得20
3秒前
英姑应助风大鱼贵采纳,获得10
3秒前
zz发布了新的文献求助10
4秒前
Pom应助没有稗子采纳,获得10
4秒前
顾矜应助优美汉堡采纳,获得10
4秒前
Rachael完成签到,获得积分10
4秒前
SYLH应助kkx采纳,获得10
4秒前
pluto应助kkx采纳,获得10
4秒前
棒棒睡不着(科研版)完成签到,获得积分10
4秒前
CokeColala发布了新的文献求助10
4秒前
CipherSage应助你好明天采纳,获得10
5秒前
平常无颜完成签到,获得积分10
5秒前
5秒前
5秒前
大模型应助大意的雪晴采纳,获得10
5秒前
哇嘞发布了新的文献求助10
6秒前
wanci应助贲耷采纳,获得10
6秒前
cyndi应助挺喜欢你采纳,获得20
6秒前
白桦应助挺喜欢你采纳,获得20
6秒前
6秒前
冷傲映阳发布了新的文献求助10
6秒前
时尚的哈密瓜完成签到,获得积分10
6秒前
6秒前
7秒前
隐形荟发布了新的文献求助10
7秒前
邋遢大王不邋遢应助雨文采纳,获得10
7秒前
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3553051
求助须知:如何正确求助?哪些是违规求助? 3129172
关于积分的说明 9380773
捐赠科研通 2828288
什么是DOI,文献DOI怎么找? 1554900
邀请新用户注册赠送积分活动 725668
科研通“疑难数据库(出版商)”最低求助积分说明 715136