Epidemiological analysis of varicella in Dalian from 2009 to 2019 and application of three kinds of model in prediction prevalence of varicella

医学 流行病学 生物统计学 人口 入射(几何) 水痘 人口学 统计 儿科
作者
Tingting Cheng,Yu Bai,Xianzhi Sun,Yuchen Ji,Fan Zhang,Xiaofeng Li
出处
期刊:BMC Public Health [BioMed Central]
卷期号:22 (1)
标识
DOI:10.1186/s12889-022-12898-3
摘要

Abstract Objective This study described the epidemic characteristics of varicella in Dalian from 2009 to 2019, explored the fitting effect of Grey model first-order one variable( GM(1,1)), Markov model, and GM(1,1)-Markov model on varicella data, and found the best fitting method for this type of data, to better predict the incidence trend. Methods For this Cross-sectional study, this article was completed in 2020, and the data collection is up to 2019. Due to the global epidemic, the infectious disease data of Dalian in 2020 itself does not conform to the normal changes of varicella and is not included. The epidemiological characteristics of varicella from 2009 to 2019 were analyzed by epidemiological descriptive methods. Using the varicella prevalence data from 2009 to 2018, predicted 2019 and compared with actual value. First made GM (1,1) prediction and Markov prediction. Then according to the relative error of the GM (1,1), made GM (1,1)-Markov prediction. Results This study collected 37,223 cases from China Information System for Disease Control and Prevention's “Disease Prevention and Control Information System” and the cumulative population was 73,618,235 from 2009 to 2019. The average annual prevalence was 50.56/100000. Varicella occurred all year round, it had a bimodal distribution. The number of cases had two peaks from April to June and November to January of the following year. The ratio of males to females was 1.17:1. The 4 to 25 accounted for 60.36% of the total population. The age of varicella appeared to shift backward. Students, kindergarten children, scattered children accounted for about 64% of all cases. The GM(1,1) model prediction result of 2019 would be 53.64, the relative error would be 14.42%, the Markov prediction result would be 56.21, the relative error would be 10.33%, and the Gray(1,1)-Markov prediction result would be 59.51. The relative error would be 5.06%. Conclusions Varicella data had its unique development characteristics. The accuracy of GM (1,1)—Markov model is higher than GM(1.1) model and Markov model. The model can be used for prediction and decision guidance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zizilala发布了新的文献求助10
1秒前
1秒前
1秒前
田様应助tidongzhiwu采纳,获得10
2秒前
djh233完成签到,获得积分20
3秒前
Ayaka2333完成签到,获得积分10
3秒前
黑大帅完成签到,获得积分10
3秒前
烟花应助fixit采纳,获得10
3秒前
斯文败类应助Blessing采纳,获得10
3秒前
木印天完成签到,获得积分10
4秒前
心杨完成签到,获得积分10
4秒前
sky完成签到,获得积分10
6秒前
解磷真菌完成签到,获得积分10
6秒前
zizilala完成签到,获得积分10
7秒前
7秒前
巫念烟发布了新的文献求助30
8秒前
英姑应助lys采纳,获得10
8秒前
8秒前
隐形曼青应助张晓芳采纳,获得10
10秒前
10秒前
Li完成签到,获得积分10
11秒前
11秒前
十七发布了新的文献求助10
11秒前
11秒前
SYLH应助save采纳,获得20
12秒前
搜集达人应助嘻哈采纳,获得10
12秒前
12秒前
Cheney发布了新的文献求助10
13秒前
斯文败类应助言亦云采纳,获得10
13秒前
orixero应助赵宝正采纳,获得10
14秒前
15秒前
拼搏的天薇完成签到,获得积分10
15秒前
15秒前
16秒前
16秒前
小小怪发布了新的文献求助10
16秒前
17秒前
夏木发布了新的文献求助10
17秒前
斯文败类应助stuart采纳,获得10
17秒前
tidongzhiwu发布了新的文献求助10
17秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4010081
求助须知:如何正确求助?哪些是违规求助? 3550086
关于积分的说明 11304770
捐赠科研通 3284597
什么是DOI,文献DOI怎么找? 1810722
邀请新用户注册赠送积分活动 886535
科研通“疑难数据库(出版商)”最低求助积分说明 811451